Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/172781
Título: Innovative Multistage ML-QSAR Models for Malaria
Autor: Borba, Joyce V. B.
Salazar-Alvarez, Luis Carlos
Ferreira, Letícia Tiburcio
Silva-Mendonça, Sabrina
Silva, Meryck Felipe Brito da
Sanches, Igor H.
Clementino, Leandro da Costa
Magalhães, Marcela Lucas
Rimoldi, Aline
Calit, Juliana
Santana, Sofia
Prudêncio, Miguel
Cravo, Pedro V.
Bargieri, Daniel Y.
Cassiano, Gustavo C.
Costa, Fabio T. M.
Andrade, Carolina Horta
Palavras-chave: Antimalarial
Artificial Intelligence
Blood stage
Hits
Liver stage
Plasmodium
QSAR
Sexual stage
Biochemistry
Drug Discovery
Organic Chemistry
SDG 3 - Good Health and Well-being
Data: 8-Ago-2024
Resumo: Malaria presents a significant challenge to global public health, with around 247 million cases estimated to occur annually worldwide. The growing resistance of Plasmodium parasites to existing therapies underscores the urgent need for new and innovative antimalarial drugs. This study leveraged artificial intelligence (AI) to tackle this complex challenge. We developed multistage Machine Learning Quantitative Structure-Activity Relationship (ML-QSAR) models to effectively analyze large datasets and predict the efficacy of chemical compounds against multiple life cycle stages of Plasmodium parasites. We then selected 16 compounds for experimental evaluation, six of which showed at least dual-stage inhibitory activity and one inhibited all life cycle stages tested. Moreover, explainable AI (XAI) analysis provided insights into critical molecular features influencing model predictions, thereby enhancing our understanding of compound interactions. This study not only empowers the development of advanced predictive AI models but also accelerates the identification and optimization of potential antiplasmodial compounds.
Descrição: Funding Information: The Article Processing Charge for the publication of this research was funded by the Coordination for the Improvement of Higher Education Personnel - CAPES (ROR identifier: 00x0ma614). The authors would like to thank the funding agencies CNPq (441038/2020-4), CAPES-STINT (88881.304811/2018-01), FAPEG (202010267000272), FAPESP (Grants 2017/18611-7, 2021/06769-0, and 2021/06769-0), Instituto Serrapilheira (grant G-1709-16618), the Swedish Research Council (grants 2016-05627 and 2021-03667). J.V.B.B., L.T.F., L.C.S.A., M.L.M., J.C. received FAPESP fellowships (grants 2019/21854-4, 2019/02171-3, 2021/13809-9, 2023/07805-6, 2020/11060-8, 2018/24878-9). L.C.S.A. also received CNPq fellowship (Grants 162117/2018-3). M.P. acknowledges funding from the \u201Cla Caixa Foundation, grant HR21-848, and the European Union Horizon Europe programme (grant 101080744). CHA thanks the \u201CL\u2019Ore\u0301al-UNESCO-ABC Para Mulheres na Cie\u0301ncia\u201D and \u201CL\u2019Ore\u0301al-UNESCO International Rising Talents\u201D for the awards and fellowships received, which partially funded this work. C.H.A. and F.T.M.C. are CNPq research fellows. Publisher Copyright: © 2024 The Authors. Published by American Chemical Society.
Peer review: yes
URI: http://hdl.handle.net/10362/172781
DOI: https://doi.org/10.1021/acsmedchemlett.4c00323
ISSN: 1948-5875
Aparece nas colecções:Home collection (IHMT)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Innovative_Multistage_ML-QSAR_Models_for_Malaria_From_Data_to_Discovery.pdf5,02 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.