Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/164174Registo completo
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.contributor.author | Brandão, Pedro R. | - |
| dc.contributor.author | Sá, Marta | - |
| dc.contributor.author | Galinha, Cláudia F. | - |
| dc.date.accessioned | 2024-02-26T23:55:42Z | - |
| dc.date.available | 2024-02-26T23:55:42Z | - |
| dc.date.issued | 2023-11 | - |
| dc.identifier.issn | 0098-1354 | - |
| dc.identifier.other | PURE: 83890432 | - |
| dc.identifier.other | PURE UUID: 2a9e04cc-2fd2-459b-bcb4-5e87a9c443d0 | - |
| dc.identifier.other | Scopus: 85173701585 | - |
| dc.identifier.other | WOS: 001098247400001 | - |
| dc.identifier.uri | http://hdl.handle.net/10362/164174 | - |
| dc.description | Funding Information: This project has received funding from the Bio Based Industries Joint Undertaking (JU) under grant agreement No. 512 887227 - MULTI-STR3AM. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Bio Based Industries Consortium. Publisher Copyright: © 2023 | - |
| dc.description.abstract | We propose a systematic approach for monitoring important productivity parameters in a Dunaliella salina culture using 2D fluorescence data. For this purpose, a methodology based on Machine Learning algorithm Projection to Latent Structures Regression (PLSR) coupled with variable selection strategies was used. Additionally, a robustness analysis is proposed to support the validation of the yielded models and provide a measure of their reliability. Robust (i.e., Q2 ≥ 0.5) and parsimonious (i.e., selecting down to 3 % of the fluorescence variables present in a 250–700 nm wavelength excitation-emission matrix) models were obtained for monitoring cell count, chlorophyll b, total carotenoids and β-carotene culture concentration, and the ratio between total carotenoids and total chlorophylls, all of which were validated with a left-out batch performing with R2 higher than 0.7 except for β-carotene (R2 = 0.54). | en |
| dc.format.extent | 8 | - |
| dc.language.iso | eng | - |
| dc.relation | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50006%2F2020/PT | - |
| dc.relation | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50006%2F2020/PT | - |
| dc.relation | info:eu-repo/grantAgreement/FCT//2021.07927.BD/PT | - |
| dc.relation | info:eu-repo/grantAgreement/FCT/OE/SFRH%2FBPD%2F95864%2F2013/PT | - |
| dc.rights | openAccess | - |
| dc.subject | 2D fluorescence | - |
| dc.subject | Bioprocess monitoring | - |
| dc.subject | Excitation-emission matrices (EEMs) | - |
| dc.subject | Machine learning | - |
| dc.subject | Microalgae cultivation | - |
| dc.subject | Projection to latent structures regression (PLSR) | - |
| dc.subject | Chemical Engineering(all) | - |
| dc.subject | Computer Science Applications | - |
| dc.title | Learning from fluorescence | - |
| dc.type | article | - |
| degois.publication.title | Computers and Chemical Engineering | - |
| degois.publication.volume | 179 | - |
| dc.peerreviewed | yes | - |
| dc.identifier.doi | https://doi.org/10.1016/j.compchemeng.2023.108452 | - |
| dc.description.version | publishersversion | - |
| dc.description.version | published | - |
| dc.title.subtitle | A tool for online multiparameter monitoring of a microalgae culture | - |
| dc.contributor.institution | DQ - Departamento de Química | - |
| dc.contributor.institution | LAQV@REQUIMTE | - |
| Aparece nas colecções: | Home collection (FCT) | |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Learning_from_fluorescence.pdf | 1,53 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











