Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/164174
Registo completo
Campo DCValorIdioma
dc.contributor.authorBrandão, Pedro R.-
dc.contributor.authorSá, Marta-
dc.contributor.authorGalinha, Cláudia F.-
dc.date.accessioned2024-02-26T23:55:42Z-
dc.date.available2024-02-26T23:55:42Z-
dc.date.issued2023-11-
dc.identifier.issn0098-1354-
dc.identifier.otherPURE: 83890432-
dc.identifier.otherPURE UUID: 2a9e04cc-2fd2-459b-bcb4-5e87a9c443d0-
dc.identifier.otherScopus: 85173701585-
dc.identifier.otherWOS: 001098247400001-
dc.identifier.urihttp://hdl.handle.net/10362/164174-
dc.descriptionFunding Information: This project has received funding from the Bio Based Industries Joint Undertaking (JU) under grant agreement No. 512 887227 - MULTI-STR3AM. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Bio Based Industries Consortium. Publisher Copyright: © 2023-
dc.description.abstractWe propose a systematic approach for monitoring important productivity parameters in a Dunaliella salina culture using 2D fluorescence data. For this purpose, a methodology based on Machine Learning algorithm Projection to Latent Structures Regression (PLSR) coupled with variable selection strategies was used. Additionally, a robustness analysis is proposed to support the validation of the yielded models and provide a measure of their reliability. Robust (i.e., Q2 ≥ 0.5) and parsimonious (i.e., selecting down to 3 % of the fluorescence variables present in a 250–700 nm wavelength excitation-emission matrix) models were obtained for monitoring cell count, chlorophyll b, total carotenoids and β-carotene culture concentration, and the ratio between total carotenoids and total chlorophylls, all of which were validated with a left-out batch performing with R2 higher than 0.7 except for β-carotene (R2 = 0.54).en
dc.format.extent8-
dc.language.isoeng-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50006%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50006%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT//2021.07927.BD/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/OE/SFRH%2FBPD%2F95864%2F2013/PT-
dc.rightsopenAccess-
dc.subject2D fluorescence-
dc.subjectBioprocess monitoring-
dc.subjectExcitation-emission matrices (EEMs)-
dc.subjectMachine learning-
dc.subjectMicroalgae cultivation-
dc.subjectProjection to latent structures regression (PLSR)-
dc.subjectChemical Engineering(all)-
dc.subjectComputer Science Applications-
dc.titleLearning from fluorescence-
dc.typearticle-
degois.publication.titleComputers and Chemical Engineering-
degois.publication.volume179-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.1016/j.compchemeng.2023.108452-
dc.description.versionpublishersversion-
dc.description.versionpublished-
dc.title.subtitleA tool for online multiparameter monitoring of a microalgae culture-
dc.contributor.institutionDQ - Departamento de Química-
dc.contributor.institutionLAQV@REQUIMTE-
Aparece nas colecções:Home collection (FCT)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Learning_from_fluorescence.pdf1,53 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.