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A B S T R A C T   

We propose a systematic approach for monitoring important productivity parameters in a Dunaliella salina cul
ture using 2D fluorescence data. For this purpose, a methodology based on Machine Learning algorithm Pro
jection to Latent Structures Regression (PLSR) coupled with variable selection strategies was used. Additionally, 
a robustness analysis is proposed to support the validation of the yielded models and provide a measure of their 
reliability. Robust (i.e., Q2 

≥ 0.5) and parsimonious (i.e., selecting down to 3 % of the fluorescence variables 
present in a 250–700 nm wavelength excitation-emission matrix) models were obtained for monitoring cell 
count, chlorophyll b, total carotenoids and β-carotene culture concentration, and the ratio between total ca
rotenoids and total chlorophylls, all of which were validated with a left-out batch performing with R2 higher than 
0.7 except for β-carotene (R2 

= 0.54).   

1. Introduction 

Microalgae are a diverse group of photosynthetic microorganisms 
that became considerably popular, having captured increasing interest 
and investment in the last 40 years (Hamed, 2016; Patel et al., 2017). 
Although formerly viewed as sustainable feedstocks for inexpensive 
applications such as fuel and feed (Vanthoor-Koopmans et al., 2013), 
nowadays microalgae are recognized as efficient systems to produce a 
variety of high-value nutraceuticals and ingredients with important 
applications in human health and nutrition. Particularly, microalgae 
carotenoids such as lutein, zeaxanthin and beta-carotenes have been 
shown to have potent antioxidant capabilities, as well as capacity to 
modulate gene expression, enhance immune function, and exert 
anti-inflammatory effects (Barkia et al., 2019; Chew et al., 2017; Khan 
et al., 2018). Additionally, microalgae production is remarkably sus
tainable, being independent of arable land systems and allowing for 
water and carbon recycling (Khan et al., 2018). 

Just like with any living cell culture, the process of cultivating 
microalgae and their products relies on the control of their metabolism, 
which is highly dependant on the culture’s biochemical environment 
(Roth, 1978). Therefore, to maximize productivity from 
microalgae-based systems while maintaining the quality of the intended 
products, key culture parameters need to be accurately and constantly 

monitored. While physical parameters can be accurately monitored in 
real time, chemical and biological parameters require expensive and 
time-consuming chromatographic equipment, making them challenging 
to assess (Cuellar-Bermudez et al., 2015; Glindkamp et al., 2009). 

Optical probes based on spectroscopy data (e.g., absorbence, fluo
rescence, Raman, NMR, etc.) are operationally inexpensive and are fit 
for online monitoring of biological systems (Li and Humphrey, 1991; 
Lindemann et al., 1998; Marose et al., 1998). Two dimensional (2D) has 
been shown to provide information not only on the activity of various 
fluorophores simultaneously but also on physicochemical properties 
such as pH, polarizability, ionic strength, solubility, etc., being already 
considered a status fingerprint for biological systems (Amigo and Mar
ini, 2013; Forina et al., 1987; Galinha et al., 2011b; Lakowicz, 2006), 
making it a potentially great tool for monitoring microalgae cultures. In 
fact, several studies have already shown the successful application of 2D 
fluorescence spectroscopy for monitoring a variety of biological pro
cesses, such as wastewater treatment (Galinha et al., 2011b, 2011a; 
2012), microbial fermentation (Bayer et al., 2020; Tartakovsky et al., 
1996) and animal cell cultivation (Graf et al., 2019; Podrazký et al., 
2003; Teixeira et al., 2011). 

Regarding microalgae cultivation, previous work demonstrated the 
applicability of 2D fluorescence spectroscopy for monitoring important 
process-related biological parameters (e.g. cell number and viability, 
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chlorophyll and carotenoid content) (Sá et al., 2020a, 2020b, 2019, 
2017). In these works, machine learning models, based on algorithm 
Projection to Latent Structures Regression, were trained to derive bio
logical parameters from a selection of principal components of com
pressed 2D fluorescence data and climatic data variables. For this 
purpose, a compression step was performed by Principal Component 
Analysis, where the multivariate EEMs were simplified to not more than 
a dozen principal components of variance, and then used alongside 
climatic variables for PLSR modelling. To our knowledge, these works 
are the first reports on application of 2D fluorescence spectroscopy in 
microalgae related bioprocesses. 

The present work aims to continue the effort of optimizing the ma
chine learning modelling methodology for using 2D fluorescence spec
troscopy data for monitoring microalgae production. Using the previous 
strategy, the user not only has to collect climatic data but also is required 
to perform a vast 2D fluorescence scan, i.e., within 250 and 700 nm, 
affecting the real-time monitoring application since the acquisition of 
EEMs of this magnitude requires about 10 min. In the present work, a 
new modelling strategy demonstrates that portions that go as low as 3 % 
of the complete EEM are sufficient for validating 2D fluorescence as a 
standalone tool for biological parameter monitoring. For that purpose, a 
dataset on Dunaliella salina cultures from the previous work (Sá et al., 
2020b) was further explored with this new strategy, where algorithm 
Projection to Latent Structures Regression (PLSR) is used directly and 
combined with variable selection strategies for identification of relevant 
wavelength areas within a 2D fluorescence excitation emission matrix 
(EEM) for each biological parameter. 

2. Methods 

The data used in this work was the same explored by Sá et al. 
(2020b), and it is a result of the monitoring of batch induction cultures 
of Dunaliella salina (from green to orange) performed outdoors at 
pilot-scale. A total of 6 batches, hereby noted A, B, C, D, E and F, were 
monitored through sampling each 2 to 4 days, resulting in 41 samples. 

Each sample provides data on 11 biological parameters and an 
excitation-emission matrix (EEM) containing 4093 fluorescence vari
ables. The projection to latent structures regression (PLSR) algorithm 
will take the fluorescence variables as model inputs and each of the 
biological parameters as the expected outputs. 

2.1. Biological parameters 

The biological parameters (Table 1) were measured using reference 
methods (Sá et al., 2020b), namely flow cytometry analysis using Guava 
MUSE Cell analyzer, and pigment analysis of methanol extracts made 
from the samples using either absorbence spectrophotometry, based on 
direct application of the modified Arnon’s equations (Lichtenthaler and 
Buschmann, 1987), or using HPLC. 

The resulting data was stored in a 41× 11 matrix of outputs, O 

O =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

o1
1 o1

2 ⋯ o1
11

o2
1 o2

2 ⋯ o2
11

⋮ ⋮ ⋱ ⋮
o41

1 o41
2 ⋯ o41

11

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(1)  

Where oi
p represents the value of biological parameter p of sample i. 

2.2. 2D fluorescence: excitation-emission matrices 

The EEM scans were performed in the excitation range of 250 to 690 
nm and in the emission range of 260 to 700 nm, with a 5 nm step. This 
results in 41 matrices containing 89× 89 = 7921 fluorescence variables. 

Each of the EEMs was first processed for removal of the fluorescence 
variables whose wavelengths of emission are below wavelength of 
excitation. This resulted in 41 EEMs with 4093 elements of interest, 
which were then unfolded into 4093-dimensional vectors with the 
format of equation 2. 

ΛΛi =
(

λλi
1, λλi

2,…, λλi
j,…, λλi

4093

)
(2) 

Where ΛΛi represents the unfolded form of the EEM that was scan
ned from sample i and λλi

j represents fluorescence variable number j of 
sample i (e.g., λλ1

1 represents the fluorescence intensity emitted at 260 
nm and excited at 250 nm for sample 1 and λλ41

4093 represents fluores
cence intensity emitted at 700 nm and excited at 690 nm for sample 41). 

All the 41 unfolded EEMs were then stored in a 41× 4093 matrix of 
inputs, I 
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(3)  

2.3. Principal component analysis for identification of outlier 
observations 

Principal Component Analysis (PCA) was applied to both the data on 
the biological parameters and the data on 2D fluorescence, but singu
larly used for detecting outlier observations. The number of principal 
components was optimized by leave-one-out-cross-validation (LOOCV) 
(Efron and Gong, 1983). For this purpose, Hotelling’s T2 test was per
formed, and observations which exceeded 99 % of the T2 range were 
deemed outliers. 

2.4. Projection to latent structures regression (PLSR) 

The algorithm used for Projection to Latent Structures Regression 
(PLSR) used in this work is SIMPLS (De Jong, 1993) for estimating a 
univariate output op from a multivariate input I. More specifically, PLSR 
returns a model for making an estimate, ôp, for each biological param
eter, op, from the fluorescence variables, I. The model is a multilinear 
equation where the fluorescence variables are multiplied by a vector of 
regression coefficients, b, resulting in a prediction: 

ôp = I . b + e = I .

⎡

⎢
⎢
⎣

b1
b2
⋮
bn

⎤

⎥
⎥
⎦+ e (4)  

where bj represents the coefficient of regression attributed to λλj and e 
the residuals vector. 

Table 1 
Biological parameters and their identification number p.  

Biological parameter p 

Cell Count (106 cells/L) 1 
Chlorophyll b (mg/L) 2 
Chlorophyll a (mg/L) 3 
Carotenoids (mg/L) 4 
Carotenoids/Chlorophylls 5 
Proteins (mg/L) 6 
Lutein (mg/L) 7 
Zeaxanthin (mg/L) 8 
α-carotene (mg/L) 9 
β-carotene (mg/L) 10 
9-cis-β-carotene (mg/L) 11  
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2.5. Datasets 

PLSR may not find acceptable solutions for cases where there is a 
non-linear relationship between inputs and outputs (Berglund and 
Wold, 2007). To overcome this possibility, the application of 
Box-transformations is commonly used in data analysis (Box and Cox, 
1964). In the present work, we applied to the dataset a λ=0 Box-Cox 
transformation, which is an element-wise logarithm transformation. 
Thus, 2 datasets were used in this work (see Table 2): Dataset “Ori”, 
which consists of writing both I and O matrices in a Microsoft Excel 
worksheet and Dataset “Log”, which consists of an element-wise loga
rithm transformation of I and O. In the case of I log transformation, the 
elements whose values were lower than 1 were set to 1. This condition is 
important because log x varies extremely when x tends to 0 and, thus it 
can amplify noise, which in this data ranges from 0 to 5. 

2.6. Model-wise and data-wise selection of fluorescence variables within 
the EEM 

The selection of fluorescence variables was performed by three 
methods: a model-wise method, a data-wise method, and a hybrid one 
(see Table 3). 

The model-wise method consists of selecting fluorescence variables 
according to their importance to the modelling using the full EEM; the 
selection criteria is thus called variable importance to projection (VIP) 
coefficient (Lazraq et al., 2003). The computation of VIP for each fluo
rescence variable can be found in the supplementary material. This 
method consists of using a criterion c for selecting variables with VIPj ≥

c (see Table 3). This criterion takes values within an interval between a 
minimum and maximum with a variable step (it depends on the steep
ness of the decrease in number of fluorescence variables by varying 
criterion c). 

The data-wise method consists of applying Moving-Window-PLSR 
(MWPLSR) (Balabin and Smirnov, 2011; Jiao et al., 2016). It consists 
of restricting quadrangular areas of variable side and position in the 
EEM, hence called moving window, and then training PLSR models with 
only the fluorescence variables within that area. 

Finally, the hybrid method is a PLSR model applied to the top 3 best 
training-performing windows obtained by MWPLSR. 

2.7. Modelling procedure 

This work analyses PLSR without variable selection, and PLSR with 
variable selection based on VIP or MWPLSR. For this purpose, the 
following 2 step modelling procedure was followed: a Machine Learning 
step and a Robustness Analysis step. Fig. 1 schematizes the modelling 
procedure. 

2.7.1. Machine learning step: tuning a learning architecture 
In this work we define the learning architecture as the set of pa

rameters that need to be set for applying a machine learning algorithm. 
This learning architecture needs to be tuned for the data by trial and 
error until a certain criterion is met (e.g., root mean squared error 
minimization) (Bernardo and Smith, 1994), a procedure also known as 

training. In the present case, the parameters to be optimized are the type 
of dataset transformation, the fluorescence variables to use, and the 
number of modelling latent variables. These will hereby be named 
hyperparameters, to distinguish them from the culture biological 
parameters. 

For this purpose, a data split (Fig. 1, box 1) was performed where 
batches A, B, D, E and F were used for training and batch C was left out 
for later testing (see Section 2.7.2). 

To obtain the optimal learning architecture, i.e., the optimal com
bination of type of dataset transformation, DTopt, fluorescence variables 
to be used, FVopt, and number of latent variables to be used, LVopt, a 
strategy of leave-one-out-cross-validation (LOOCV) was used (Fig. 1, 
box 2). For each learning architecture, PLSR models are computed for all 
the combinations of the dataset that can be obtained by leaving one 
observation out and then all those models are tested using the respective 
left-out observation. Each of the models’ predictions obtained and 
respective true value are then used for calculating a percentage error of 
cross-validation, ECV (%) (formula is found supplementary material). 
The optimal learning architecture is the one for which the cross- 
validation PLSR models yielded the lowest ECV. 

Also, an early stop was implemented to the number of latent vari
ables to avoid too much complexity in the models; this is because even 
though LOOCV is a good tool for optimization of PLSR models it is also 
susceptible to overfitting (Cawley and Talbot, 2010; Golbraikh and 
Tropsha, 2002), especially in a case where the number of observations (i. 
e., degrees of freedom) is low. Thus, the early stop criterion used in this 
work is that the latent variables should not be higher than 8 latent 
variables (i.e., 20 % of the number of observations). 

2.7.2. Second step: robustness analysis of the architecture 
The optimal architecture is used to compute a PLSR model using the 

training stage data (i.e., batches A, B, D, E and F) yielding a model ready 
for work, hereby noted as model W (Fig. 1, connection from box 2 to box 
3). The validity of this model relies strictly on how well it performs with 
data never seen before that represents the intended application for the 
model. This is why an entire batch is left out instead of choosing a 
random set of observations (Cawley and Talbot, 2010; Politis and 
Romano, 2003). 

Thus, model W is tested using the left-out data (i.e., batch C, see 
Fig. 1 box 3) and computing two performance criteria: the Root Mean 
Square Error of Prediction (RMSEP) and a coefficient of determination of 
prediction (R2), for which the formulas can be found in supplementary 
material. In this work it was considered that models with values of R2 

superior to 0.75 have minimal satisfactory performance; in other words, 
a minimal performing model should have the capacity to explain at least 
75 % of the variance in the data. 

2.7.3. Third step: robustness analysis of the architecture 
Finally, a robustness analysis of the learning architecture is per

formed, which was inspired in the concept of nested cross-validation 
(Cawley and Talbot, 2010; Varma and Simon, 2006). In the absence of 
further observations / batches for validation of model W, the learning 

Table 2 
Datasets used for applying PLSR modelling; the table presents their description 
and the transformation required for any element within the matrices of inputs (I) 
outputs (O); λλi

j and oi
j represent respectively the element of matrices I and O in 

line i and column j.  

Dataset Description Elements of I Elements of 
O 

Ori Original λλi
j oi

p 

Log Element-wise logarithm 
application 

log(λλi
j), 1 if λλi

j ≤

1 
log(oi

p)

Table 3 
Strategies used for variable selection, their specific methods and correspondent 
basis, selection condition and threshold range; bj represents the regression co
efficient attributed to fluorescent variable j obtained by PLSR, VIPj represents 
the variable importance to projection attributed to fluorescent variable j, and n 
represents the initial number of fluorescence variables.  

Method Basis Selection condition Threshold range 

VIP Model- 
wise 

VIPj > c c ∈ [ min (VIPj),

max (VIPj) ]

MWPLSR EEM 
theory 

EEM with side = c 
c ∈

[
8, 12, 16
20, 24, 28

]

Top 
MWPLSR 

Hybrid Top 3 windows from 
MWPLSR   
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architecture is used to compute and validate models under different 
training/validation divisions i.e., for all 6 combinations of dataset di
vision by leaving one batch out (LOBO, see Fig. 1 boxes 4, 5 and 6). In 
other words, a LOBO cross-validation is performed, and it yields the 
coefficient of determination for LOBO cross-validation (Q2). Just as for 
RMSECV, Q2 does not quantify the performance of a model (since it 
averages the performance of different models, although with the same 
learning architecture), but rather it provides an estimation of reliability 
of the modelling procedure. Formula and details are available in the 
supplementary material. 

In this work it is assumed that a value of Q2 greater than 0.5 implies 
satisfactory robustness, as done also by other works (Peng and Lai, 2012; 
Sartorius Stedim Data Analytics, 2017; Triba et al., 2015). 

This analysis provides information to either support or refute the 
performance estimated by R2, since it tests how robust is the model 
building by the learning architecture. It gives an idea on the likelihood 
of dataset division overfitting (Cawley and Talbot, 2010), i.e. the like
lihood of the learning architecture yielding good performing models 
only if certain observations are left in/out from the validation set. 
Therefore, the robustness analysis result is prioritized over R2 because, 
when a very low Q2 is verified, no matter how good the value of R2 is, the 
model should not be reliable as it probably resulted from a learning 
architecture that overfitted the dataset. 

2.8. Random data modelling 

The same methodology described in the sections above was applied 
to a dataset consisting of the fluorescent data matrix I, and, instead of 
the biological parameters, a set of 22 random normally distributed 
variables. In the same logic stated in Section 2.7 this resulted in 616 
random data models. This random parameter modelling is useful to 
assess whether the modelled information is related to the biological 
parameters or to noise (Ferreira et al., 2005), serving as a support for the 
significance of the robustness of the models obtained using the original 
data. It is expected that the values of Q2 of the random data modelling 
should be significantly lower than the ones obtained with modelling the 
original data. 

2.9. In silico implementation 

The implementation of the outlier detection and modelling 

procedure, along with EEM restriction and the PLSR algorithm, were all 
performed by scripts developed in house using GNU Octave software. 
The algorithm SIMPLS (De Jong, 1993) was imported from the package 
‘statistics’ of GNU Octave; the data was retrieved and written from and 
to Microsoft Excel spreadsheets using package ‘io’ of GNU Octave. 

3. Results and discussion 

3.1. PLSR modelling without variable selection 

The 1st set of models was generated by PLSR modelling without 
fluorescent variable selection, thus the learning architecture does not 
include the optimal fluorescence variables selection, FVopt. The results 
for the learning architecture and model W of each parameter are pre
sented in Table 4. 

According to these results, only Cell Count and the ratio Chloro
phylls/Carotenoids can be modelled with a robust learning architecture 
(i.e., Q2 ≥ 0.5). In Fig. 2 is possible to observe that most predictions 
during robustness analysis do not exceed one standard deviation from 
equality, confirming the mentioned robustness. The model W of Cell 
Count predicts batch C with R2 = 0.94, equivalent to a RMSEP of 1.51 M 
cells/mL, while the model W of Carotenoids/Chlorophylls achieved only 
R2 = 0.69 with a RMSEP of 1.26. In Fig. 2 is possible to observe that the 
data points representing the predictions of model W follow the experi
mental data closely, confirming satisfactory predicting ability of the 
models for both biological parameters. In the case of Carotenoids/ 
Chlorophylls, the low R2 is mainly due to the underestimation of two 
data points as Fig. 2 shows. 

Parameters Chlorophyll b and Carotenoids stand out from the others 
having non-negligible values of Q2 (≥ 0.37). The accuracy plots of the 
robustness analysis for both these parameters (Fig. 2) show consistent 
overestimations in predicting batch E (green circles) and un
derestimations of the predictions for batch D (blue crosses) for both, 
being these apparently the main reasons for the low Q2. These results 
suggest that what is being learned/modelled from the data is not 
random, and so the gathering of more data would probably result in 
acceptable learning architectures and model W. 

Overall, the great majority of the parameters presented low values of 
Q2, questioning the reliability of their corresponding models. These re
sults may be due to one of these hypotheses: 

Fig. 1. Scheme of the modelling methodology developed in this work.  
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• Hypothesis 1: There is a data mismatch problem, meaning that there 
are batches whose information comes from a different distribution, 
implying that different models will be learned depending on the 
training set used (Ng et al., 2022), causing low values of Q2. This can 
be due to the cultivations not being exact replicates of each other, 
leaving room for consistent differences between each other that are 
reflected on the EEMs (e.g., different spectroscopic matrix effects or 
different intramolecular deactivation/quenching due to slightly 
different culture media).  

• Hypothesis 2: There are fluorescence variables in the EEM that, not 
only do not contribute with relevant information, but also their 

information interferes with the execution of PLSR algorithm, namely 
in the projection of the latent structures (Forina et al., 2004).  

• Hypothesis 3: Both above; hypothesis 1 and 2 may be simultaneously 
verified, meaning that the fluorescence variables whose information 
is interfering may be exactly the ones which provoke a non-evident 
batch-to-batch information heterogeneity; a way for verifying this 
is to perform fluorescence variable selection (see next section). 

3.2. PLSR with variable selection 

The 2nd set of models was generated by combining PLSR with either 
a model-wise variable selection method, namely variable importance to 

Table 4 
PLSR models obtained without variable selection; each model provides results on the Learning Architecture Tuned, its Robustness and the performance of model W.  

Output Information Learning Architecture Tuned Learning Architecture Robustness Model W 

P Biological Parameter p units DTopt LVopt ECVopt (%) Q2 RMSEP (p units) R2 

1 Cell Count 106 cells/L Log 6 7.4 0.78 1.51 0.94 
2 Chlorophyll b mg/L Ori 8 14.6 0.37 1.07 0.72 
3 Chlorophyll a mg/L Log 5 28.0 0.18 0.43 0.82 
4 Carotenoids mg/L Ori 7 16.2 0.44 5.73 0.78 
5 Car/Chl – Ori 6 15.3 0.74 1.26 0.69 
6 Protein mg/L Log 8 61.5 − 0.35 15.12 0.50 
7 Lutein mg/L Ori 1 93.4 0.05 0.52 − 0.85 
8 Zeaxanthin mg/L Ori 3 102.8 − 0.47 0.17 − 0.24 
9 α-carotene mg/L Ori 3 63.8 0.08 0.23 0.62 
10 β-carotene mg/L Log 7 62.1 − 0.02 2.84 0.56 
11 9-cis-β-carotene mg/L Ori 1 66.9 0.23 3.14 0.08  

Fig. 2. Accuracy plots (i.e., model data vs experimental data) for the learning and testing of model W and for the robustness analysis of the learning architecture for 
parameters Cell Count, Carotenoids/Chlorophylls, Chlorophyll b and Carotenoids for PLSR without variable selection; the plots regarding model W show how far 
from equality were the predictions of model W of the left out batch C (yellow triangles); the plots regarding the robustness analysis show how consistent is the model 
building by keeping learning architecture constant varying the left-out batch for testing (A - orange squares; B - violet crosses; C - yellow triangles; D - blue crosses; E - 
green circles; F – blue diamonds). 
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projection (VIP), or by moving window PLSR hereby noted as VIP-wise 
and MWPLSR selection. The results for the learning architecture (now 
including the number of fluorescence variables selected, FVopt) and the 
best result for the model W of each parameter is presented in Table 5. 

According to these results (Table 5), variable selection resulted in 
learning architectures with higher robustness (Q2) for most of the bio
logical parameters when compared to no variable selection (Table 4). By 
incorporating this selection method, not only Cell Count and Caroten
oids/Chlorophylls, but also Chlorophyll b, Chlorophyll a, Carotenoids, 
and β-carotene now have learning architectures with Q2 > 0.5. The 
performance of the model W for these parameters is satisfactory (R2 >

0.70) except for β-carotene (R2 = 0.54). In Fig. 3 it is possible to see that 
the predictions of model W for these five parameters follow the exper
imental data closely, and that most robustness analysis predictions do 
not differ more than one standard deviation from the experimental data. 
These results corroborate Hypothesis 2, meaning that there are fluo
rescence variables in the EEM that interfere with the execution of PLSR 
algorithm, and give some support to Hypothesis 3. Thus, it seems that 
the fluorescence variables removed were responsible for the batch-to- 
batch heterogeneity. Moreover, Fig. 3 locates in the EEM the fluores
cence variables selected for the learning architecture. 

Interestingly, regarding variable selection, the results show cases 
where the excitation-emission wavelengths selected by the modelling 
procedure for estimating a biological parameter are different than their 
autofluorescence excitation-emission wavelengths (Fig. 3). For deriving 
Chlorophyll a and b, the fluorescent variables selected are within the 
excitation region between 300 and 400 nm and emission region between 
475 and 625 nm, which is not expected to correlate with chlorophylls, 
since their fluorescent emission exists only from 680 nm (Maxwell and 
Johnson, 2000). Parameter Carotenoids was modelled using 2 windows 
in the EEM, being one of them within 480 and 570 nm of excitation. 
Generally, carotenoids absorption is between 440 and 540 nm. Addi
tionally, the Rayleigh scattering lines, which are commonly deemed as 
interferant in the EEM, seem to provide relevant information to the point 
of being singularly used for prediction in the case of Carotenoids/
Chlorophylls ratio. A possible explanation for this can be the different 
interaction with light that chlorophylls and carotenoids have with it: 
chlorophylls tend to conduct radiation while carotenoids ten to quench 
it, so it would make sense that the ratio between the two would impact 
light scattering. Overall, these results suggest that following areas 
within EEM directly associated with the fluorescence of the compounds 
of monitoring interest may not provide complete information; other 
areas must be considered. This is probably due to the effects of physi
cochemical properties and of the culture broth that can result in in
terferences such as quenching and inner filter effect, which affect 
fluorescence profiles in a non-linear manner. 

3.3. Biological parameters with no robust model and previous work 

From the 11 biological parameters, 5 could not be modelled with 

minimal acceptable robustness according to the criteria stablished (i.e., 
Q2≥0.5); namely Proteins, Lutein, Zeaxanthin, α-carotene, and 9-cis- 
β-carotene. However, Protein and α-carotene stand out from having Q2=

0.37 and 0.41, respectively, although both have model W with R2 <

0.75. The fact that, the great majority of the models obtained using the 
random data did not overcome Q2 = 0.25, suggests that there is a pos
sibility of obtaining robust models for these parameters if more obser
vations or variables are included, e.g., just as it was done in the previous 
work by adding climatic data (Sá et al., 2020b). An explanation for the 
lower robustness may be that the data mismatch problem affects more 
these parameters (Hypothesis 1) than the successfully modelled ones. 
Indeed, small variations could not be avoided amongst the batches due 
mainly to seasonal variation. The previous work accounted for this 
seasonality by including climatic data, which may explain why some of 
the left unmodelled biological parameters in this work were considered 
successfully modelled in the previous one. The evaluation of perfor
mance was done differently in the previous work: it resorted to Pearson’s 
coefficient of determination for linear correlation, rather than the co
efficient of determination used in this work (equation S.5 in supple
mentary material). For comparison, coefficients of determination were 
re-calculated using the same equation. Table 6 shows the Pearson’s 
coefficients of determination for linear correlation obtained from the 
previous and the present works, and indeed, parameters Cell Count, 
Chlorophyll a, α-carotene and β-carotene present models with higher 
accuracy, although no robustness analysis was performed. 

4. Conclusions 

The combination of the PLSR algorithm with variable selection and 
robustness analysis was shown to be a valuable methodology when 
trying to derive biological parameters of Dunaliella salina cultures from 
2D fluorescence spectroscopy. Variable selection not only provided the 
detection of elements in the excitation-emission matrix (EEM) that 
negatively impact model robustness and performance when included, 
but also showed that fluorophore-associated areas in EEM may not be 
the best way to select wavelengths for monitoring specific biological 
parameters; the present modelling approach is more reliable. The 
robustness analysis revealed that models with high-performance during 
leave-one-out cross-validation and during testing with a left-out batch 
may still exhibit overfitting and, thus, is a process that should be always 
included in challenges such as the one in this work. Overall, the meth
odology developed in this work yielded robust and parsimonious models 
ready for use for monitoring of Cell Count, Chlorophyll b, Chlorophyll a, 
total Carotenoids, β-carotene concentrations, and Carotenoids/Chloro
phylls ratio in Dunaliella salina cultures. The models require only up to 
22 % of the fluorescent variables present in a 250–700 nm wavelength 
(with 5 nm step) range of excitation-emission. 

Table 5 
PLSR models obtained using variable selection; each model provides results on the Learning Architecture Tuned, its Robustness and the performance of model W.  

Output Information Learning Architecture Tuned Learning Architecture Robustness Model W 

p Bioparameter p units DTopt FVopt LVopt ECVopt (%) Q2 RMSEP (p units) R2 

1 Cell Count 106 cells/L Log-VIP 888 7 4.1 0.80 1.32 0.93 
2 Chlorophyll b mg/L Log-VIP 542 5 3.9 0.51 1.12 0.70 
3 Chlorophyll a mg/L Log-VIP 231 5 8.2 0.80 0.23 0.95 
4 Carotenoids mg/L Log-TopMW16 663 6 10.0 0.87 2.14 0.97 
5 Car/Chl – Ori-VIP 122 6 5.1 0.75 1.22 0.72 
6 Protein mg/L Log-VIP 131 6 23.3 0.38 16.39 0.41 
7 Lutein mg/L Ori-VIP 210 8 28.6 − 0.17 0.55 − 1.07 
8 Zeaxanthin mg/L Log-VIP 126 8 33.5 − 0.20 0.23 − 0.76 
9 α-carotene mg/L Ori-MW12 144 8 46.6 0.41 0.25 0.57 
10 β-carotene mg/L Log-VIP 121 8 16.7 0.69 2.91 0.54 
11 9-cis-β-carotene mg/L Ori-MW8 64 8 36.5 − 0.21 3.58 − 0.20  
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Sá, M., Ferrer-Ledo, N., Wijffels, R., Crespo, J.G., Barbosa, M., Galinha, C.F., 2020a. 
Monitoring of eicosapentaenoic acid (EPA) production in the microalgae 
Nannochloropsis oceanica. Algal Res. 45 https://doi.org/10.1016/j. 
algal.2019.101766. 
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