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We propose a systematic approach for monitoring important productivity parameters in a Dunaliella salina cul-
ture using 2D fluorescence data. For this purpose, a methodology based on Machine Learning algorithm Pro-
jection to Latent Structures Regression (PLSR) coupled with variable selection strategies was used. Additionally,
a robustness analysis is proposed to support the validation of the yielded models and provide a measure of their
reliability. Robust (i.e., Q2 > 0.5) and parsimonious (i.e., selecting down to 3 % of the fluorescence variables
present in a 250-700 nm wavelength excitation-emission matrix) models were obtained for monitoring cell
count, chlorophyll b, total carotenoids and p-carotene culture concentration, and the ratio between total ca-

rotenoids and total chlorophylls, all of which were validated with a left-out batch performing with R? higher than
0.7 except for p-carotene (R2 = 0.54).

1. Introduction

Microalgae are a diverse group of photosynthetic microorganisms
that became considerably popular, having captured increasing interest
and investment in the last 40 years (Hamed, 2016; Patel et al., 2017).
Although formerly viewed as sustainable feedstocks for inexpensive
applications such as fuel and feed (Vanthoor-Koopmans et al., 2013),
nowadays microalgae are recognized as efficient systems to produce a
variety of high-value nutraceuticals and ingredients with important
applications in human health and nutrition. Particularly, microalgae
carotenoids such as lutein, zeaxanthin and beta-carotenes have been
shown to have potent antioxidant capabilities, as well as capacity to
modulate gene expression, enhance immune function, and exert
anti-inflammatory effects (Barkia et al., 2019; Chew et al., 2017; Khan
et al., 2018). Additionally, microalgae production is remarkably sus-
tainable, being independent of arable land systems and allowing for
water and carbon recycling (Khan et al., 2018).

Just like with any living cell culture, the process of cultivating
microalgae and their products relies on the control of their metabolism,
which is highly dependant on the culture’s biochemical environment
(Roth, 1978). Therefore, to maximize productivity from
microalgae-based systems while maintaining the quality of the intended
products, key culture parameters need to be accurately and constantly
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monitored. While physical parameters can be accurately monitored in
real time, chemical and biological parameters require expensive and
time-consuming chromatographic equipment, making them challenging
to assess (Cuellar-Bermudez et al., 2015; Glindkamp et al., 2009).

Optical probes based on spectroscopy data (e.g., absorbence, fluo-
rescence, Raman, NMR, etc.) are operationally inexpensive and are fit
for online monitoring of biological systems (Li and Humphrey, 1991;
Lindemann et al., 1998; Marose et al., 1998). Two dimensional (2D) has
been shown to provide information not only on the activity of various
fluorophores simultaneously but also on physicochemical properties
such as pH, polarizability, ionic strength, solubility, etc., being already
considered a status fingerprint for biological systems (Amigo and Mar-
ini, 2013; Forina et al., 1987; Galinha et al., 2011b; Lakowicz, 2006),
making it a potentially great tool for monitoring microalgae cultures. In
fact, several studies have already shown the successful application of 2D
fluorescence spectroscopy for monitoring a variety of biological pro-
cesses, such as wastewater treatment (Galinha et al., 2011b, 2011a;
2012), microbial fermentation (Bayer et al., 2020; Tartakovsky et al.,
1996) and animal cell cultivation (Graf et al., 2019; Podrazky et al.,
2003; Teixeira et al., 2011).

Regarding microalgae cultivation, previous work demonstrated the
applicability of 2D fluorescence spectroscopy for monitoring important
process-related biological parameters (e.g. cell number and viability,
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chlorophyll and carotenoid content) (Sa et al., 2020a, 2020b, 2019,
2017). In these works, machine learning models, based on algorithm
Projection to Latent Structures Regression, were trained to derive bio-
logical parameters from a selection of principal components of com-
pressed 2D fluorescence data and climatic data variables. For this
purpose, a compression step was performed by Principal Component
Analysis, where the multivariate EEMs were simplified to not more than
a dozen principal components of variance, and then used alongside
climatic variables for PLSR modelling. To our knowledge, these works
are the first reports on application of 2D fluorescence spectroscopy in
microalgae related bioprocesses.

The present work aims to continue the effort of optimizing the ma-
chine learning modelling methodology for using 2D fluorescence spec-
troscopy data for monitoring microalgae production. Using the previous
strategy, the user not only has to collect climatic data but also is required
to perform a vast 2D fluorescence scan, i.e., within 250 and 700 nm,
affecting the real-time monitoring application since the acquisition of
EEMs of this magnitude requires about 10 min. In the present work, a
new modelling strategy demonstrates that portions that go as low as 3 %
of the complete EEM are sufficient for validating 2D fluorescence as a
standalone tool for biological parameter monitoring. For that purpose, a
dataset on Dunaliella salina cultures from the previous work (Sa et al.,
2020b) was further explored with this new strategy, where algorithm
Projection to Latent Structures Regression (PLSR) is used directly and
combined with variable selection strategies for identification of relevant
wavelength areas within a 2D fluorescence excitation emission matrix
(EEM) for each biological parameter.

2. Methods

The data used in this work was the same explored by Sa et al.
(2020b), and it is a result of the monitoring of batch induction cultures
of Dunadliella salina (from green to orange) performed outdoors at
pilot-scale. A total of 6 batches, hereby noted A, B, C, D, E and F, were
monitored through sampling each 2 to 4 days, resulting in 41 samples.

Each sample provides data on 11 biological parameters and an
excitation-emission matrix (EEM) containing 4093 fluorescence vari-
ables. The projection to latent structures regression (PLSR) algorithm
will take the fluorescence variables as model inputs and each of the
biological parameters as the expected outputs.

2.1. Biological parameters

The biological parameters (Table 1) were measured using reference
methods (Sa et al., 2020b), namely flow cytometry analysis using Guava
MUSE Cell analyzer, and pigment analysis of methanol extracts made
from the samples using either absorbence spectrophotometry, based on
direct application of the modified Arnon’s equations (Lichtenthaler and
Buschmann, 1987), or using HPLC.

The resulting data was stored in a 41 x 11 matrix of outputs, O

Table 1
Biological parameters and their identification number p.

Biological parameter

Cell Count (10° cells/L)
Chlorophyll b (mg/L)
Chlorophyll a (mg/L)
Carotenoids (mg/L)
Carotenoids/Chlorophylls
Proteins (mg/L)

Lutein (mg/L)
Zeaxanthin (mg/L)
a-carotene (mg/L)
p-carotene (mg/L)
9-cis-p-carotene (mg/L)
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Where oli, represents the value of biological parameter p of sample i.

2.2. 2D fluorescence: excitation-emission matrices

The EEM scans were performed in the excitation range of 250 to 690
nm and in the emission range of 260 to 700 nm, with a 5 nm step. This
results in 41 matrices containing 89 x 89 = 7921 fluorescence variables.

Each of the EEMs was first processed for removal of the fluorescence
variables whose wavelengths of emission are below wavelength of
excitation. This resulted in 41 EEMs with 4093 elements of interest,
which were then unfolded into 4093-dimensional vectors with the
format of equation 2.

AN = (220,205 cces ABl o A @

Where AA’ represents the unfolded form of the EEM that was scan-
ned from sample i and MJ’: represents fluorescence variable number j of
sample i (e.g., A4} represents the fluorescence intensity emitted at 260
nm and excited at 250 nm for sample 1 and 11}, represents fluores-
cence intensity emitted at 700 nm and excited at 690 nm for sample 41).

All the 41 unfolded EEMs were then stored in a 41 x 4093 matrix of
inputs, 1
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2.3. Principal component analysis for identification of outlier
observations

Principal Component Analysis (PCA) was applied to both the data on
the biological parameters and the data on 2D fluorescence, but singu-
larly used for detecting outlier observations. The number of principal
components was optimized by leave-one-out-cross-validation (LOOCV)
(Efron and Gong, 1983). For this purpose, Hotelling’s T2 test was per-
formed, and observations which exceeded 99 % of the T? range were
deemed outliers.

2.4. Projection to latent structures regression (PLSR)

The algorithm used for Projection to Latent Structures Regression
(PLSR) used in this work is SIMPLS (De Jong, 1993) for estimating a
univariate output o, from a multivariate input I. More specifically, PLSR
returns a model for making an estimate, 0, for each biological param-
eter, o0,, from the fluorescence variables, I. The model is a multilinear
equation where the fluorescence variables are multiplied by a vector of
regression coefficients, b, resulting in a prediction:

by
6,=1.b +e=1. |7 +e @)

bﬂ

where b; represents the coefficient of regression attributed to A}; and e
the residuals vector.
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2.5. Datasets

PLSR may not find acceptable solutions for cases where there is a
non-linear relationship between inputs and outputs (Berglund and
Wold, 2007). To overcome this possibility, the application of
Box-transformations is commonly used in data analysis (Box and Cox,
1964). In the present work, we applied to the dataset a A=0 Box-Cox
transformation, which is an element-wise logarithm transformation.
Thus, 2 datasets were used in this work (see Table 2): Dataset “Ori”,
which consists of writing both I and O matrices in a Microsoft Excel
worksheet and Dataset “Log”, which consists of an element-wise loga-
rithm transformation of I and O. In the case of I log transformation, the
elements whose values were lower than 1 were set to 1. This condition is
important because log x varies extremely when x tends to 0 and, thus it
can amplify noise, which in this data ranges from 0 to 5.

2.6. Model-wise and data-wise selection of fluorescence variables within
the EEM

The selection of fluorescence variables was performed by three
methods: a model-wise method, a data-wise method, and a hybrid one
(see Table 3).

The model-wise method consists of selecting fluorescence variables
according to their importance to the modelling using the full EEM; the
selection criteria is thus called variable importance to projection (VIP)
coefficient (Lazraq et al., 2003). The computation of VIP for each fluo-
rescence variable can be found in the supplementary material. This
method consists of using a criterion c for selecting variables with VIP; >
¢ (see Table 3). This criterion takes values within an interval between a
minimum and maximum with a variable step (it depends on the steep-
ness of the decrease in number of fluorescence variables by varying
criterion c).

The data-wise method consists of applying Moving-Window-PLSR
(MWPLSR) (Balabin and Smirnov, 2011; Jiao et al., 2016). It consists
of restricting quadrangular areas of variable side and position in the
EEM, hence called moving window, and then training PLSR models with
only the fluorescence variables within that area.

Finally, the hybrid method is a PLSR model applied to the top 3 best
training-performing windows obtained by MWPLSR.

2.7. Modelling procedure

This work analyses PLSR without variable selection, and PLSR with
variable selection based on VIP or MWPLSR. For this purpose, the
following 2 step modelling procedure was followed: a Machine Learning
step and a Robustness Analysis step. Fig. 1 schematizes the modelling
procedure.

2.7.1. Machine learning step: tuning a learning architecture

In this work we define the learning architecture as the set of pa-
rameters that need to be set for applying a machine learning algorithm.
This learning architecture needs to be tuned for the data by trial and
error until a certain criterion is met (e.g., root mean squared error
minimization) (Bernardo and Smith, 1994), a procedure also known as

Table 2

Datasets used for applying PLSR modelling; the table presents their description
and the transformation required for any element within the matrices of inputs (I)
outputs (0); M} and o} represent respectively the element of matrices I and O in
line i and column j.

Dataset  Description Elements of 1 Elements of
o
Ori Original M}‘I 01",
Log ElenTent-wise logarithm log(M}), 1if MJ‘: < log(of)
application 1
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Table 3

Strategies used for variable selection, their specific methods and correspondent
basis, selection condition and threshold range; b;j represents the regression co-
efficient attributed to fluorescent variable j obtained by PLSR, VIP; represents
the variable importance to projection attributed to fluorescent variable j, and n
represents the initial number of fluorescence variables.

Method Basis Selection condition Threshold range

VIP Model- VIP; > ¢ ¢ € [min (VIP)),
wise max (VIP;) |

MWPLSR EEM EEM with side = ¢ 8,12, 16
theory ¢ [20, 24, 28]
Top Hybrid Top 3 windows from
MWPLSR MWPLSR

training. In the present case, the parameters to be optimized are the type
of dataset transformation, the fluorescence variables to use, and the
number of modelling latent variables. These will hereby be named
hyperparameters, to distinguish them from the culture biological
parameters.

For this purpose, a data split (Fig. 1, box 1) was performed where
batches A, B, D, E and F were used for training and batch C was left out
for later testing (see Section 2.7.2).

To obtain the optimal learning architecture, i.e., the optimal com-
bination of type of dataset transformation, DTy, fluorescence variables
to be used, FV,p, and number of latent variables to be used, LVqp, a
strategy of leave-one-out-cross-validation (LOOCV) was used (Fig. 1,
box 2). For each learning architecture, PLSR models are computed for all
the combinations of the dataset that can be obtained by leaving one
observation out and then all those models are tested using the respective
left-out observation. Each of the models’ predictions obtained and
respective true value are then used for calculating a percentage error of
cross-validation, ECV (%) (formula is found supplementary material).
The optimal learning architecture is the one for which the cross-
validation PLSR models yielded the lowest ECV.

Also, an early stop was implemented to the number of latent vari-
ables to avoid too much complexity in the models; this is because even
though LOOCV is a good tool for optimization of PLSR models it is also
susceptible to overfitting (Cawley and Talbot, 2010; Golbraikh and
Tropsha, 2002), especially in a case where the number of observations (i.
e., degrees of freedom) is low. Thus, the early stop criterion used in this
work is that the latent variables should not be higher than 8 latent
variables (i.e., 20 % of the number of observations).

2.7.2. Second step: robustness analysis of the architecture

The optimal architecture is used to compute a PLSR model using the
training stage data (i.e., batches A, B, D, E and F) yielding a model ready
for work, hereby noted as model W (Fig. 1, connection from box 2 to box
3). The validity of this model relies strictly on how well it performs with
data never seen before that represents the intended application for the
model. This is why an entire batch is left out instead of choosing a
random set of observations (Cawley and Talbot, 2010; Politis and
Romano, 2003).

Thus, model W is tested using the left-out data (i.e., batch C, see
Fig. 1 box 3) and computing two performance criteria: the Root Mean
Square Error of Prediction (RMSEP) and a coefficient of determination of
prediction (R2), for which the formulas can be found in supplementary
material. In this work it was considered that models with values of R?
superior to 0.75 have minimal satisfactory performance; in other words,
a minimal performing model should have the capacity to explain at least
75 % of the variance in the data.

2.7.3. Third step: robustness analysis of the architecture

Finally, a robustness analysis of the learning architecture is per-
formed, which was inspired in the concept of nested cross-validation
(Cawley and Talbot, 2010; Varma and Simon, 2006). In the absence of
further observations / batches for validation of model W, the learning
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Fig. 1. Scheme of the modelling methodology developed in this work.

architecture is used to compute and validate models under different
training/validation divisions i.e., for all 6 combinations of dataset di-
vision by leaving one batch out (LOBO, see Fig. 1 boxes 4, 5 and 6). In
other words, a LOBO cross-validation is performed, and it yields the
coefficient of determination for LOBO cross-validation (Q2). Just as for
RMSECV, Q? does not quantify the performance of a model (since it
averages the performance of different models, although with the same
learning architecture), but rather it provides an estimation of reliability
of the modelling procedure. Formula and details are available in the
supplementary material.

In this work it is assumed that a value of Q? greater than 0.5 implies
satisfactory robustness, as done also by other works (Peng and Lai, 2012;
Sartorius Stedim Data Analytics, 2017; Triba et al., 2015).

This analysis provides information to either support or refute the
performance estimated by R2, since it tests how robust is the model
building by the learning architecture. It gives an idea on the likelihood
of dataset division overfitting (Cawley and Talbot, 2010), i.e. the like-
lihood of the learning architecture yielding good performing models
only if certain observations are left in/out from the validation set.
Therefore, the robustness analysis result is prioritized over R? because,
when a very low Q? is verified, no matter how good the value of R? is, the
model should not be reliable as it probably resulted from a learning
architecture that overfitted the dataset.

2.8. Random data modelling

The same methodology described in the sections above was applied
to a dataset consisting of the fluorescent data matrix I, and, instead of
the biological parameters, a set of 22 random normally distributed
variables. In the same logic stated in Section 2.7 this resulted in 616
random data models. This random parameter modelling is useful to
assess whether the modelled information is related to the biological
parameters or to noise (Ferreira et al., 2005), serving as a support for the
significance of the robustness of the models obtained using the original
data. It is expected that the values of Q? of the random data modelling
should be significantly lower than the ones obtained with modelling the
original data.

2.9. In silico implementation

The implementation of the outlier detection and modelling

procedure, along with EEM restriction and the PLSR algorithm, were all
performed by scripts developed in house using GNU Octave software.
The algorithm SIMPLS (De Jong, 1993) was imported from the package
‘statistics’ of GNU Octave; the data was retrieved and written from and
to Microsoft Excel spreadsheets using package ‘io’ of GNU Octave.

3. Results and discussion
3.1. PLSR modelling without variable selection

The 1st set of models was generated by PLSR modelling without
fluorescent variable selection, thus the learning architecture does not
include the optimal fluorescence variables selection, FVop. The results
for the learning architecture and model W of each parameter are pre-
sented in Table 4.

According to these results, only Cell Count and the ratio Chloro-
phylls/Carotenoids can be modelled with a robust learning architecture
(i.e., Q> > 0.5). In Fig. 2 is possible to observe that most predictions
during robustness analysis do not exceed one standard deviation from
equality, confirming the mentioned robustness. The model W of Cell
Count predicts batch C with R? = 0.94, equivalent to a RMSEP of 1.51 M
cells/mL, while the model W of Carotenoids/Chlorophylls achieved only
R? = 0.69 with a RMSEP of 1.26. In Fig. 2 is possible to observe that the
data points representing the predictions of model W follow the experi-
mental data closely, confirming satisfactory predicting ability of the
models for both biological parameters. In the case of Carotenoids/
Chlorophylls, the low R? is mainly due to the underestimation of two
data points as Fig. 2 shows.

Parameters Chlorophyll b and Carotenoids stand out from the others
having non-negligible values of Q® (> 0.37). The accuracy plots of the
robustness analysis for both these parameters (Fig. 2) show consistent
overestimations in predicting batch E (green circles) and un-
derestimations of the predictions for batch D (blue crosses) for both,
being these apparently the main reasons for the low Q2. These results
suggest that what is being learned/modelled from the data is not
random, and so the gathering of more data would probably result in
acceptable learning architectures and model W.

Overall, the great majority of the parameters presented low values of
Q?, questioning the reliability of their corresponding models. These re-
sults may be due to one of these hypotheses:
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Table 4
PLSR models obtained without variable selection; each model provides results on the Learning Architecture Tuned, its Robustness and the performance of model W.
Output Information Learning Architecture Tuned Learning Architecture Robustness Model W
P Biological Parameter p units DTopt LVopt ECV,pc (%) Q? RMSEP (p units) R?
1 Cell Count 10° cells/L Log 6 7.4 0.78 1.51 0.94
2 Chlorophyll b mg/L Ori 8 14.6 0.37 1.07 0.72
3 Chlorophyll a mg/L Log 5 28.0 0.18 0.43 0.82
4 Carotenoids mg/L Ori 7 16.2 0.44 5.73 0.78
5 Car/Chl - Ori 6 15.3 0.74 1.26 0.69
6 Protein mg/L Log 8 61.5 —0.35 15.12 0.50
7 Lutein mg/L Ori 1 93.4 0.05 0.52 —0.85
8 Zeaxanthin mg/L Ori 3 102.8 —0.47 0.17 —0.24
9 a-carotene mg/L Ori 3 63.8 0.08 0.23 0.62
10 p-carotene mg/L Log 7 62.1 —0.02 2.84 0.56
11 9-cis-p-carotene mg/L Ori 1 66.9 0.23 3.14 0.08
Fluorescent
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Fig. 2. Accuracy plots (i.e., model data vs experimental data) for the learning and testing of model W and for the robustness analysis of the learning architecture for
parameters Cell Count, Carotenoids/Chlorophylls, Chlorophyll b and Carotenoids for PLSR without variable selection; the plots regarding model W show how far
from equality were the predictions of model W of the left out batch C (yellow triangles); the plots regarding the robustness analysis show how consistent is the model
building by keeping learning architecture constant varying the left-out batch for testing (A - orange squares; B - violet crosses; C - yellow triangles; D - blue crosses; E -

green circles; F — blue diamonds).

e Hypothesis 1: There is a data mismatch problem, meaning that there
are batches whose information comes from a different distribution,
implying that different models will be learned depending on the
training set used (Ng et al., 2022), causing low values of Qz. This can
be due to the cultivations not being exact replicates of each other,
leaving room for consistent differences between each other that are
reflected on the EEMs (e.g., different spectroscopic matrix effects or
different intramolecular deactivation/quenching due to slightly
different culture media).

Hypothesis 2: There are fluorescence variables in the EEM that, not
only do not contribute with relevant information, but also their

information interferes with the execution of PLSR algorithm, namely
in the projection of the latent structures (Forina et al., 2004).

e Hypothesis 3: Both above; hypothesis 1 and 2 may be simultaneously
verified, meaning that the fluorescence variables whose information
is interfering may be exactly the ones which provoke a non-evident
batch-to-batch information heterogeneity; a way for verifying this
is to perform fluorescence variable selection (see next section).

3.2. PLSR with variable selection

The 2nd set of models was generated by combining PLSR with either
a model-wise variable selection method, namely variable importance to
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projection (VIP), or by moving window PLSR hereby noted as VIP-wise
and MWPLSR selection. The results for the learning architecture (now
including the number of fluorescence variables selected, FV,) and the
best result for the model W of each parameter is presented in Table 5.

According to these results (Table 5), variable selection resulted in
learning architectures with higher robustness (QZ) for most of the bio-
logical parameters when compared to no variable selection (Table 4). By
incorporating this selection method, not only Cell Count and Caroten-
oids/Chlorophylls, but also Chlorophyll b, Chlorophyll a, Carotenoids,
and p-carotene now have learning architectures with Q? > 0.5. The
performance of the model W for these parameters is satisfactory (R? >
0.70) except for p-carotene (R? = 0.54). In Fig. 3 it is possible to see that
the predictions of model W for these five parameters follow the exper-
imental data closely, and that most robustness analysis predictions do
not differ more than one standard deviation from the experimental data.
These results corroborate Hypothesis 2, meaning that there are fluo-
rescence variables in the EEM that interfere with the execution of PLSR
algorithm, and give some support to Hypothesis 3. Thus, it seems that
the fluorescence variables removed were responsible for the batch-to-
batch heterogeneity. Moreover, Fig. 3 locates in the EEM the fluores-
cence variables selected for the learning architecture.

Interestingly, regarding variable selection, the results show cases
where the excitation-emission wavelengths selected by the modelling
procedure for estimating a biological parameter are different than their
autofluorescence excitation-emission wavelengths (Fig. 3). For deriving
Chlorophyll a and b, the fluorescent variables selected are within the
excitation region between 300 and 400 nm and emission region between
475 and 625 nm, which is not expected to correlate with chlorophylls,
since their fluorescent emission exists only from 680 nm (Maxwell and
Johnson, 2000). Parameter Carotenoids was modelled using 2 windows
in the EEM, being one of them within 480 and 570 nm of excitation.
Generally, carotenoids absorption is between 440 and 540 nm. Addi-
tionally, the Rayleigh scattering lines, which are commonly deemed as
interferant in the EEM, seem to provide relevant information to the point
of being singularly used for prediction in the case of Carotenoids/-
Chlorophylls ratio. A possible explanation for this can be the different
interaction with light that chlorophylls and carotenoids have with it:
chlorophylls tend to conduct radiation while carotenoids ten to quench
it, so it would make sense that the ratio between the two would impact
light scattering. Overall, these results suggest that following areas
within EEM directly associated with the fluorescence of the compounds
of monitoring interest may not provide complete information; other
areas must be considered. This is probably due to the effects of physi-
cochemical properties and of the culture broth that can result in in-
terferences such as quenching and inner filter effect, which affect
fluorescence profiles in a non-linear manner.

3.3. Biological parameters with no robust model and previous work

From the 11 biological parameters, 5 could not be modelled with
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minimal acceptable robustness according to the criteria stablished (i.e.,
Q220.5); namely Proteins, Lutein, Zeaxanthin, a-carotene, and 9-cis-
B-carotene. However, Protein and a-carotene stand out from having Q2 =
0.37 and 0.41, respectively, although both have model W with R? <
0.75. The fact that, the great majority of the models obtained using the
random data did not overcome Q2 = 0.25, suggests that there is a pos-
sibility of obtaining robust models for these parameters if more obser-
vations or variables are included, e.g., just as it was done in the previous
work by adding climatic data (Sa et al., 2020b). An explanation for the
lower robustness may be that the data mismatch problem affects more
these parameters (Hypothesis 1) than the successfully modelled ones.
Indeed, small variations could not be avoided amongst the batches due
mainly to seasonal variation. The previous work accounted for this
seasonality by including climatic data, which may explain why some of
the left unmodelled biological parameters in this work were considered
successfully modelled in the previous one. The evaluation of perfor-
mance was done differently in the previous work: it resorted to Pearson’s
coefficient of determination for linear correlation, rather than the co-
efficient of determination used in this work (equation S.5 in supple-
mentary material). For comparison, coefficients of determination were
re-calculated using the same equation. Table 6 shows the Pearson’s
coefficients of determination for linear correlation obtained from the
previous and the present works, and indeed, parameters Cell Count,
Chlorophyll a, a-carotene and p-carotene present models with higher
accuracy, although no robustness analysis was performed.

4. Conclusions

The combination of the PLSR algorithm with variable selection and
robustness analysis was shown to be a valuable methodology when
trying to derive biological parameters of Dunaliella salina cultures from
2D fluorescence spectroscopy. Variable selection not only provided the
detection of elements in the excitation-emission matrix (EEM) that
negatively impact model robustness and performance when included,
but also showed that fluorophore-associated areas in EEM may not be
the best way to select wavelengths for monitoring specific biological
parameters; the present modelling approach is more reliable. The
robustness analysis revealed that models with high-performance during
leave-one-out cross-validation and during testing with a left-out batch
may still exhibit overfitting and, thus, is a process that should be always
included in challenges such as the one in this work. Overall, the meth-
odology developed in this work yielded robust and parsimonious models
ready for use for monitoring of Cell Count, Chlorophyll b, Chlorophyll a,
total Carotenoids, p-carotene concentrations, and Carotenoids/Chloro-
phylls ratio in Dunaliella salina cultures. The models require only up to
22 % of the fluorescent variables present in a 250-700 nm wavelength
(with 5 nm step) range of excitation-emission.

Table 5

PLSR models obtained using variable selection; each model provides results on the Learning Architecture Tuned, its Robustness and the performance of model W.
Output Information Learning Architecture Tuned Learning Architecture Robustness Model W
P Bioparameter p units DTopt FVopt LVopt ECVgpt (%) Q? RMSEP (p units) R?
1 Cell Count 10° cells/L Log-VIP 888 7 4.1 0.80 1.32 0.93
2 Chlorophyll b mg/L Log-VIP 542 5 3.9 0.51 1.12 0.70
3 Chlorophyll a mg/L Log-VIP 231 5 8.2 0.80 0.23 0.95
4 Carotenoids mg/L Log-TopMW16 663 6 10.0 0.87 2.14 0.97
5 Car/Chl - Ori-VIP 122 6 5.1 0.75 1.22 0.72
6 Protein mg/L Log-VIP 131 6 23.3 0.38 16.39 0.41
7 Lutein mg/L Ori-VIP 210 8 28.6 -0.17 0.55 -1.07
8 Zeaxanthin mg/L Log-VIP 126 8 335 -0.20 0.23 -0.76
9 a-carotene mg/L Ori-MW12 144 8 46.6 0.41 0.25 0.57
10 p-carotene mg/L Log-VIP 121 8 16.7 0.69 291 0.54
11 9-cis-p-carotene mg/L Ori-MW8 64 8 36.5 —0.21 3.58 —0.20
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Fig. 3. Accuracy plots (i.e., model data vs experimental data) for the learning and testing of model W, and for the robustness analysis of the learning architecture for
parameters Cell Count, Chlorophyll b, Chlorophyll a, Carotenoids and Carotenoids/Chlorophylls for PLSR coupled with variable selection; the plots regarding model
W show how far from equality were the predictions of model W of the left out batch C (yellow triangles); the plots regarding the robustness analysis show how
consistent is the model building by keeping learning architecture constant and varying the left-out batch for testing (A - orange squares; B - violet crosses; C - yellow

triangles; D - blue crosses; E - green circles; F - blue diamonds).

Table 6

Coefficients of determination for linear correlation for the validation (R2) ob-
tained from previous work and from the present work; the models from the
earlier were computed using 2D fluorescence and climatic data and without
fluorescence variable selection.

Model identification Best R2

P Parameter Previous work Present work

1 Cell Count (10° cells/L) 0.97 0.76

2 Chlorophyll b (mg/L) 0.85 0.90

3 Chlorophyll a (mg/L) 0.75 0.67 (not robust)
4 Carotenoids (mg/L) 0.79 0.91

8 Zeaxanthin (mg/L) 0.69 0.97 (not robust)
9 a-carotene (mg/L) 0.63 0.40 (not robust)
10 p-carotene (mg/L) 0.79 0.63

11 9-cis-p-carotene (mg/L) 0.73 0.75 (not robust)
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