Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/158338
Título: Polyvinylpyrrolidone Nanofibers Incorporating Mesoporous Bioactive Glass for Bone Tissue Engineering
Autor: Matos, Ricardo J. R.
Silva, Jorge C.
Soares, Paula I. P.
Borges, João Paulo
Palavras-chave: bone regeneration
electrospun polyvinylpyrrolidone
mesoporous bioactive glass
polymeric scaffolds
Biotechnology
Bioengineering
Biomaterials
Biochemistry
Biomedical Engineering
Molecular Medicine
Data: 17-Mai-2023
Resumo: Composite biomaterials that combine osteoconductive and osteoinductive properties are a promising approach for bone tissue engineering (BTE) since they stimulate osteogenesis while mimicking extracellular matrix (ECM) morphology. In this context, the aim of the present research was to produce polyvinylpyrrolidone (PVP) nanofibers containing mesoporous bioactive glass (MBG) 80S15 nanoparticles. These composite materials were produced by the electrospinning technique. Design of experiments (DOE) was used to estimate the optimal electrospinning parameters to reduce average fiber diameter. The polymeric matrices were thermally crosslinked under different conditions, and the fibers’ morphology was studied using scanning electron microscopy (SEM). Evaluation of the mechanical properties of nanofibrous mats revealed a dependence on thermal crosslinking parameters and on the presence of MBG 80S15 particles inside the polymeric fibers. Degradation tests indicated that the presence of MBG led to a faster degradation of nanofibrous mats and to a higher swelling capacity. The assessment of in vitro bioactivity in simulated body fluid (SBF) was performed using MBG pellets and PVP/MBG (1:1) composites to assess if the bioactive properties of MBG 80S15 were kept when it was incorporated into PVP nanofibers. FTIR and XRD analysis along with SEM–EDS results indicated that a hydroxy-carbonate apatite (HCA) layer formed on the surface of MBG pellets and nanofibrous webs after soaking in SBF over different time periods. In general, the materials revealed no cytotoxic effects on the Saos-2 cell line. The overall results for the materials produced show the potential of the composites to be used in BTE.
Descrição: Publisher Copyright: © 2023 by the authors.
Peer review: yes
URI: http://hdl.handle.net/10362/158338
DOI: https://doi.org/10.3390/biomimetics8020206
ISSN: 2313-7673
Aparece nas colecções:FCT: DF - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Polyvinylpyrrolidone_Nanofibers.pdf14,05 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.