Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/155944
Título: Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches
Autor: Pardo, Cesar Camilo Garcia
Orientador: Prado, Melissa
Palavras-chave: Cryptocurrency
Decentralized
Deep reinforcement learning
Markowitz's Optimization
Portfolio optimization
Data de Defesa: 12-Jan-2023
Resumo: Cryptocurrencies have become appealing investment options in recent years because of their high potential returns. This asset class emerged as a unique investment opportunity with distinguishing characteristics such as decentralized nature and uncorrelation with other assets. Investing in this product, however, has become a hazardous venture due to its extreme volatility and unpredictable price swings. As a result, a portfolio optimization is an essential tool for investors seeking to reduce risk while aiming for high returns. This thesis studies the Deep Reinforcement Learning models applied to cryptocurrency portfolio optimization compared to traditional methodologies like Markowitz's and rudimentary equally weighted portfolios.
URI: http://hdl.handle.net/10362/155944
Designação: A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2022_23_fall_52488_C_sarCamiloGarc_aPardo.pdf1,69 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.