Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/155944
Registo completo
Campo DCValorIdioma
dc.contributor.advisorPrado, Melissa-
dc.contributor.authorPardo, Cesar Camilo Garcia-
dc.date.accessioned2023-07-28T14:41:19Z-
dc.date.available2023-07-28T14:41:19Z-
dc.date.issued2023-01-12-
dc.date.submitted2022-12-16-
dc.identifier.urihttp://hdl.handle.net/10362/155944-
dc.description.abstractCryptocurrencies have become appealing investment options in recent years because of their high potential returns. This asset class emerged as a unique investment opportunity with distinguishing characteristics such as decentralized nature and uncorrelation with other assets. Investing in this product, however, has become a hazardous venture due to its extreme volatility and unpredictable price swings. As a result, a portfolio optimization is an essential tool for investors seeking to reduce risk while aiming for high returns. This thesis studies the Deep Reinforcement Learning models applied to cryptocurrency portfolio optimization compared to traditional methodologies like Markowitz's and rudimentary equally weighted portfolios.pt_PT
dc.language.isoengpt_PT
dc.rightsopenAccesspt_PT
dc.subjectCryptocurrencypt_PT
dc.subjectDecentralizedpt_PT
dc.subjectDeep reinforcement learningpt_PT
dc.subjectMarkowitz's Optimizationpt_PT
dc.subjectPortfolio optimizationpt_PT
dc.titlePortfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approachespt_PT
dc.typemasterThesispt_PT
thesis.degree.nameA Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economicspt_PT
dc.identifier.tid203312180pt_PT
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopt_PT
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2022_23_fall_52488_C_sarCamiloGarc_aPardo.pdf1,69 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.