Please use this identifier to cite or link to this item: http://hdl.handle.net/10362/155114
Title: Roadmap on artificial intelligence and big data techniques for superconductivity
Author: Yazdani-Asrami, Mohammad
Song, Wenjuan
Morandi, Antonio
de Carne, Giovanni
Murta-Pina, João
Pronto, Anabela
Oliveira, Roberto
Grilli, Francesco
Pardo, Enric
Parizh, Michael
Shen, Boyang
Coombs, Tim
Salmi, Tiina
Wu, Di
Coatanea, Eric
Moseley, Dominic A.
Badcock, Rodney A.
Zhang, Mengjie
Marinozzi, Vittorio
Tran, Nhan
Wielgosz, Maciej
Skoczeń, Andrzej
Tzelepis, Dimitrios
Meliopoulos, Sakis
Vilhena, Nuno
Sotelo, Guilherme
Jiang, Zhenan
Große, Veit
Bagni, Tommaso
Mauro, Diego
Senatore, Carmine
Mankevich, Alexey
Amelichev, Vadim
Samoilenkov, Sergey
Yoon, Tiem Leong
Wang, Yao
Camata, Renato P.
Chen, Cheng Chien
Madureira, Ana Maria
Abraham, Ajith
Keywords: applied superconductivity
artificial intelligence
big data
deep learning
machine learning
neural network
Ceramics and Composites
Condensed Matter Physics
Metals and Alloys
Electrical and Electronic Engineering
Materials Chemistry
Issue Date: Apr-2023
Citation: Yazdani-Asrami, M., Song, W., Morandi, A., de Carne, G., Murta-Pina, J., Pronto, A., Oliveira, R., Grilli, F., Pardo, E., Parizh, M., Shen, B., Coombs, T., Salmi, T., Wu, D., Coatanea, E., Moseley, D. A., Badcock, R. A., Zhang, M., Marinozzi, V., ... Abraham, A. (2023). Roadmap on artificial intelligence and big data techniques for superconductivity. Superconductor Science and Technology, 36(4), Article 043501. https://doi.org/10.1088/1361-6668/acbb34
Yazdani-Asrami, M., Song, W., Morandi, A., de Carne, G., Murta-Pina, J., Pronto, A., Oliveira, R., Grilli, F., Pardo, E., Parizh, M., Shen, B., Coombs, T., Salmi, T., Wu, D., Coatanea, E., Moseley, D. A., Badcock, R. A., Zhang, M., Marinozzi, V., ... Abraham, A. (2023). Roadmap on artificial intelligence and big data techniques for superconductivity. Superconductor Science and Technology, 36(4), Article 043501. https://doi.org/10.1088/1361-6668/acbb34
Abstract: This paper presents a roadmap to the application of AI techniques and big data (BD) for different modelling, design, monitoring, manufacturing and operation purposes of different superconducting applications. To help superconductivity researchers, engineers, and manufacturers understand the viability of using AI and BD techniques as future solutions for challenges in superconductivity, a series of short articles are presented to outline some of the potential applications and solutions. These potential futuristic routes and their materials/technologies are considered for a 10-20 yr time-frame.
Description: Funding Information: Financial support was provided by the Swiss National Science Foundation (Grant No. 200021_184940). Funding Information: Networking support provided by the European Cooperation in Science and Technology, COST Action CA19108 (Hi-SCALE) is acknowledged. Funding Information: A part of this work was supported by the Russian National Technology Initiative Foundation (Grant ID 0000000007418QR20002). Funding Information: The research was also supported by the European Synchrotron Radiation Facility (Grant No. MA-2767). Funding Information: This work was supported in part by the New Zealand Ministry of Business, Innovation and Employment (MBIE) by the Strategic Science Investment Fund ‘‘Advanced Energy Technology Platforms’’ under Contract RTVU2004. Funding Information: Y Wang acknowledges support from the National Science Foundation (NSF) Award DMR-2132338. R P Camata and C-C Chen are supported by the FTPP Program funded by NSF EPSCoR RII Track-1 Cooperative Agreement OIA-2148653. C-C Chen also acknowledges support from the NSF Award DMR-2142801. Publisher Copyright: © 2023 The Author(s). Published by IOP Publishing Ltd.
Peer review: yes
URI: http://hdl.handle.net/10362/155114
DOI: https://doi.org/10.1088/1361-6668/acbb34
ISSN: 0953-2048
Appears in Collections:Home collection (FCT)

Files in This Item:
File Description SizeFormat 
Roadmap_on_artificial_intelligence_and_big_data.pdf6,77 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.