Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/154317
Título: Volatility forecasting with garch models and recurrent neural networks
Autor: Ferrari, Enrique Fabio
Orientador: Hirschey, Nicholas H.
Palavras-chave: Volatility forecasting
Implied volatility
Realized volatility
Volatility risk premium
Machine learning
Neural networks
Garch
Lstm
Gru
Vix
Data de Defesa: 10-Jan-2023
Resumo: The three main ways to estimate future volatilities include the implied volatility of option prices, time-series volatility models, and neural network models. This project investigates whether there are economically meaningful differences between those approaches. Seminal time-series models like the GARCH, as well as recurrent neural network models like the LSTM are investigated to forecast volatilities. An eventual informational advantage over the market’s expectation of future volatility in the form of implied volatility is sought after. Through trading strategies involving options, as well as investment vehicles that emulate the VIX, it is attempted to trade volatility in a profitable way.
URI: http://hdl.handle.net/10362/154317
Designação: A Work Project, presented as part of the requirements for the Award of a Master Degree in Finance from the Faculdade de Economia da Universidade Nova de Lisboa.
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
WP_FILE.pdf3,75 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.