Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/154317Registo completo
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.contributor.advisor | Hirschey, Nicholas H. | - |
| dc.contributor.author | Ferrari, Enrique Fabio | - |
| dc.date.accessioned | 2023-06-23T14:05:52Z | - |
| dc.date.available | 2023-06-23T14:05:52Z | - |
| dc.date.issued | 2023-01-10 | - |
| dc.date.submitted | 2022-12-16 | - |
| dc.identifier.uri | http://hdl.handle.net/10362/154317 | - |
| dc.description.abstract | The three main ways to estimate future volatilities include the implied volatility of option prices, time-series volatility models, and neural network models. This project investigates whether there are economically meaningful differences between those approaches. Seminal time-series models like the GARCH, as well as recurrent neural network models like the LSTM are investigated to forecast volatilities. An eventual informational advantage over the market’s expectation of future volatility in the form of implied volatility is sought after. Through trading strategies involving options, as well as investment vehicles that emulate the VIX, it is attempted to trade volatility in a profitable way. | pt_PT |
| dc.language.iso | eng | pt_PT |
| dc.relation | UID/ECO/00124/2013 | pt_PT |
| dc.rights | openAccess | pt_PT |
| dc.subject | Volatility forecasting | pt_PT |
| dc.subject | Implied volatility | pt_PT |
| dc.subject | Realized volatility | pt_PT |
| dc.subject | Volatility risk premium | pt_PT |
| dc.subject | Machine learning | pt_PT |
| dc.subject | Neural networks | pt_PT |
| dc.subject | Garch | pt_PT |
| dc.subject | Lstm | pt_PT |
| dc.subject | Gru | pt_PT |
| dc.subject | Vix | pt_PT |
| dc.title | Volatility forecasting with garch models and recurrent neural networks | pt_PT |
| dc.type | masterThesis | pt_PT |
| thesis.degree.name | A Work Project, presented as part of the requirements for the Award of a Master Degree in Finance from the Faculdade de Economia da Universidade Nova de Lisboa. | pt_PT |
| dc.identifier.tid | 203311639 | pt_PT |
| dc.subject.fos | Domínio/Área Científica::Ciências Sociais::Economia e Gestão | pt_PT |
| Aparece nas colecções: | NSBE: Nova SBE - MA Dissertations | |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| WP_FILE.pdf | 3,75 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











