Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/154317
Registo completo
Campo DCValorIdioma
dc.contributor.advisorHirschey, Nicholas H.-
dc.contributor.authorFerrari, Enrique Fabio-
dc.date.accessioned2023-06-23T14:05:52Z-
dc.date.available2023-06-23T14:05:52Z-
dc.date.issued2023-01-10-
dc.date.submitted2022-12-16-
dc.identifier.urihttp://hdl.handle.net/10362/154317-
dc.description.abstractThe three main ways to estimate future volatilities include the implied volatility of option prices, time-series volatility models, and neural network models. This project investigates whether there are economically meaningful differences between those approaches. Seminal time-series models like the GARCH, as well as recurrent neural network models like the LSTM are investigated to forecast volatilities. An eventual informational advantage over the market’s expectation of future volatility in the form of implied volatility is sought after. Through trading strategies involving options, as well as investment vehicles that emulate the VIX, it is attempted to trade volatility in a profitable way.pt_PT
dc.language.isoengpt_PT
dc.relationUID/ECO/00124/2013pt_PT
dc.rightsopenAccesspt_PT
dc.subjectVolatility forecastingpt_PT
dc.subjectImplied volatilitypt_PT
dc.subjectRealized volatilitypt_PT
dc.subjectVolatility risk premiumpt_PT
dc.subjectMachine learningpt_PT
dc.subjectNeural networkspt_PT
dc.subjectGarchpt_PT
dc.subjectLstmpt_PT
dc.subjectGrupt_PT
dc.subjectVixpt_PT
dc.titleVolatility forecasting with garch models and recurrent neural networkspt_PT
dc.typemasterThesispt_PT
thesis.degree.nameA Work Project, presented as part of the requirements for the Award of a Master Degree in Finance from the Faculdade de Economia da Universidade Nova de Lisboa.pt_PT
dc.identifier.tid203311639pt_PT
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopt_PT
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
WP_FILE.pdf3,75 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.