Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/154165| Título: | Developing a Computer-Aided Drug Design Approach to Discovery Lead-Like PMM2 Enzyme Activators for Congenital Disordes of Glycosylation (CDG) Therapy |
| Autor: | Magrinho, Savador da Costa Macedo |
| Orientador: | Pereira, Maria Florbela Videira, Paula |
| Palavras-chave: | N-glycosylation PMM2-CDG CDG therapies Computer-Aided Drug Design Drug repurposing Pharmacological chaperoning |
| Data de Defesa: | 29-Mai-2023 |
| Resumo: | The Congenital Disorders of Glycosylation (CDG) comprise a group of rare metabolic diseases caused by inherited defects in cellular glycosylation pathways, ultimately leading to a wide range of multisystem disease phenotypes. The most common sub-type, PMM2-CDG, with >1000 reported cases worldwide, is characterised by genetic defects in the coding gene for phosphomannomutase 2 (PMM2), which catalyses the interconversion of mannose 6-P to mannose 1-P, a substrate for posttranslational N-glycosylation. While no effective treatment is yet available, previous functional characterisation studies in patient-observed mutations have suggested the possibility of designing pharmaco-chaperone (PC) therapies to stabilize PMM2 structure and partially rescue its residual activity. Using an experimentally-validated compound dataset containing over 10.000 drug-like molecules whose interaction with human PMM2 enzyme, namely thermal stability and IC50 (half maximal inhibitory concentration), had been previously assayed, two machine learning strategies were developed to unveil possible PCs for hPMM2 activation: 1) A quantitative structure-activity relationship (QSAR) classification model to predict the interaction of submitted molecules with PMM2 and 2) a QSAR regression model to estimate an IC50 value for such ligand-protein interactions. These QSAR models later served as computational tools to perform a virtual drug screen to search for and select hits with the desired PC profile. Compounds yielding interesting results were submitted to docking studies to further explore possible protein-ligand interactions and the complex’s overall affinity. Promising hits included quinolone derivatives, phenylpropanoic acid derivatives, and vitamins, amongst others. Some of these compounds were acquired and underwent in vitro experiments in patient-derived fibroblast cell lines to further analyse their effect on mutant PMM2 activity from cell extracts using different molecular biology techniques. The applications of different biomarkers for this disease model were identified and studied. This experimental work allowed to elaborate on the therapeutic potential of selected hits and provided notions on defining the models’ predictive capabilities for such complex structure-biological activity relationships. Os Distúrbios Congénitos da Glicosilação (CDG) representam um grupo de doenças metabólicas raras causadas por defeitos hereditários nos mecanismos de glicosilação, dando origem a uma gama ampla de fenótipos, com um impacto multissistémico. O subtipo mais comum, PMM2-CDG, com mais de 1000 casos relatados em todo o mundo, é caracterizado por defeitos no gene codificante da fosfomanomutase 2 (PMM2), que catalisa a inter-conversão de manose 6-P em manose 1-P, um substrato para N-glicosilação pós-traducional. Embora não exista nenhuma terapêutica eficaz, estudos de caracterização funcional em mutações observadas em pacientes sugeriram a possibilidade de projectar terapias de farmacochaperonas (PC) para estabilizar a estrutura da PMM2 e resgatar parcialmente a sua actividade. Usando um conjunto de dados com mais de 10000 compostos validados experimentalmente cuja interacção com a PMM2 humana, nomeadamente estabilidade térmica e IC50 (metade da concentração inibitória máxima), foram previamente testadas, duas estratégias de aprendizagem automática foram desenvolvidas para desvendar possíveis PCs para activação da hPMM2: 1) Um modelo classificativo de relações quantitativas de estrutura-actividade (QSAR) para prever a interacção das moléculas submetidas para com a PMM2 e 2) um modelo de regressão QSAR para estimar um valor de IC50 para as tais interacções. Esses modelos QSAR serviram posteriormente como ferramentas computacionais para realizar uma triagem virtual de fármacos com o intuito de pesquisar e seleccionar hits com o perfil desejado. Os compostos com resultados interessantes foram submetidos a estudos de docking molecular para explorar mais aprofundadamente as interacções proteína-ligando e a afinidade geral do complexo. Compostos promissores incluem derivados de quinolonas, de ácido fenilpropanóico, vitaminas, entre outros. Quatro destes foram adquiridos e submetidos a experimentação in vitro em linhas de fibroblastos derivadas de pacientes para explorar o seu efeito na actividade da PMM2 a partir de extractos celulares usando diferentes técnicas de biologia molecular. As aplicações de diferentes biomarcadores para este modelo de doença foram também identificadas e estudadas. Este trabalho experimental permitiu aprofundar o potencial terapêutico de hits seleccionados e definir as capacidades de previsão dos modelos QSAR para relações tão complexas entre estrutura química e actividade biológica. |
| URI: | http://hdl.handle.net/10362/154165 |
| Designação: | Mestrado em Bioquímica |
| Aparece nas colecções: | FCT: DQ - Dissertações de Mestrado |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Magrinho_2023.pdf | 6,88 MB | Adobe PDF | Ver/Abrir Acesso Restrito. Solicitar cópia ao autor! |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











