Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/151950
Título: | Relations Between Uniformly Almost Periodic Functions and the Fourier Transform |
Autor: | Araújo, Gonçalo Gomes |
Orientador: | Karlovych, Oleksiy Fernandes, Cláudio |
Palavras-chave: | Uniformly Almost Periodic Function Fourier Transform Banach Algebra Inverse-Closed Algebra |
Data de Defesa: | Out-2022 |
Resumo: | With this work, we intend to study the relation between uniformly almost periodic func-
tions and the Fourier transform. To this end, we start by defining the concept of a uni-
formly almost periodic function and we study several important algebraic and topological
properties of these functions.
Afterwards, we define a new class of functions, which we will call normal functions,
and we will show that this class of functions is precisely equal to the set of uniformly
almost periodic functions. We then define another class of functions, which we shall
denote by AP (R), and we will define it as the closure, on L∞(R), of trigonometric polyno-
mial functions, and we prove that this set also coincides with the set of uniformly almost
periodic functions. We are then left with three equivalent definitions established.
We then define the Fourier transform of a function belonging to L1(R) and, after
studying some of its most important properties, we extend this concept to functions that
belong to L2(R).
After analyzing significant properties concerning Banach algebras, maximal ideals
and multiplicative linear functionals, we define the algebra, APp(R) as the closure, in the
norm of the Fourier multipliers, of trigonometric polynomial functions, and we conclude
this paper by proving that the algebra APp(R) is inverse-closed in AP (R). Com a realização deste trabalho pretendemos estudar a relação que existe entre as funções uniformemente quase periódicas e a transformada de Fourier. Com esse intuito, começa- mos por definir o conceito de uma função uniformemente quase periódica e estudamos várias propriedades algébricas e topológicas das mesmas. Posteriormente, definimos uma nova classe de funções, que iremos designar por fun- ções normais, e demonstraremos que esta classe de funções será mesmo igual ao conjunto das funções uniformemente quase periódicas. Seguidamente, definimos outra classe de funções, que iremos denotar por AP (R) e que será o fecho em L∞(R) das funções polinomi- ais trigonométricas, e provamos que este conjunto também coincide com o conjunto das funções uniformemente quase periódicas. Ficamos então com três definições equivalentes estabelecidas. Em seguida, definimos a transformada de Fourier de uma função pertencente a L1(R) e, após estudarmos algumas das suas mais importantes propriedades, estendemos este conceito para as funções de L2(R). Depois de analisarmos propriedades significativas relativas a álgebras de Banach, ideais maximais e funcionais lineares multiplicativos, definimos a álgebra, APp(R) como sendo o fecho, na norma dos multiplicadores de Fourier, das funções polinomiais trigo- nométricas, e concluímos este trabalho ao provar que a álgebra APp(R) é inversamente fechada em AP (R). |
URI: | http://hdl.handle.net/10362/151950 |
Designação: | MASTER IN MATHEMATICS AND APPLICATIONS |
Aparece nas colecções: | FCT: DM - Dissertações de Mestrado |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Araujo_2022.pdf | 4,14 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.