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ABSTRACT

With this work, we intend to study the relation between uniformly almost periodic func-
tions and the Fourier transform. To this end, we start by defining the concept of a uni-
formly almost periodic function and we study several important algebraic and topological
properties of these functions.

Afterwards, we define a new class of functions, which we will call normal functions,
and we will show that this class of functions is precisely equal to the set of uniformly
almost periodic functions. We then define another class of functions, which we shall
denote by AP(R), and we will define it as the closure, on L*(R), of trigonometric polyno-
mial functions, and we prove that this set also coincides with the set of uniformly almost
periodic functions. We are then left with three equivalent definitions established.

We then define the Fourier transform of a function belonging to L!(R) and, after
studying some of its most important properties, we extend this concept to functions that
belong to L%(R).

After analyzing significant properties concerning Banach algebras, maximal ideals
and multiplicative linear functionals, we define the algebra, AP, (R) as the closure, in the
norm of the Fourier multipliers, of trigonometric polynomial functions, and we conclude

this paper by proving that the algebra AP,(R) is inverse-closed in AP(R).

Keywords: Uniformly Almost Periodic Function; Fourier Transform; Banach Algebra;

Inverse-Closed Algebra.
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ReEsumMmo

Com a realizagao deste trabalho pretendemos estudar a relacao que existe entre as fungoes
uniformemente quase periddicas e a transformada de Fourier. Com esse intuito, comega-
mos por definir o conceito de uma funcao uniformemente quase periddica e estudamos
varias propriedades algébricas e topoldgicas das mesmas.

Posteriormente, definimos uma nova classe de fungoes, que iremos designar por fun-
¢oes normais, e demonstraremos que esta classe de fungdes sera mesmo igual ao conjunto
das funcoes uniformemente quase periodicas. Seguidamente, definimos outra classe de
funcoes, que iremos denotar por AP(R) e que sera o fecho em L*(R) das fungdes polinomi-
ais trigonométricas, e provamos que este conjunto também coincide com o conjunto das
funcoes uniformemente quase periodicas. Ficamos entao com trés defini¢oes equivalentes
estabelecidas.

Em seguida, definimos a transformada de Fourier de uma fungio pertencente a L' (R)
e, ap0s estudarmos algumas das suas mais importantes propriedades, estendemos este
conceito para as fungdes de L*(R).

Depois de analisarmos propriedades significativas relativas a algebras de Banach,
ideais maximais e funcionais lineares multiplicativos, definimos a algebra, APp(R) como
sendo o fecho, na norma dos multiplicadores de Fourier, das fun¢des polinomiais trigo-
nometricas, e concluimos este trabalho ao provar que a algebra AP,(R) é inversamente
fechada em AP(R).

Palavras-chave: Funcao Uniformemente Quase Peridédica; Transformada de Fourier; Al-

gebra de Banach; Algebra Inversamente Fechada.
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INTRODUCTION

We know that periodic functions are really important in Mathematics. However, there
exist some functions that are not periodic but satisfy some special properties that make
them really similar to periodic functions, and we call them uniformly almost periodic
functions. For instance, if we consider the function f(x) := cos(27x) + cos(271V2x) we
know that cos(27x) and cos(2mV2x) are periodic functions, but f will not be periodic
because f(x) = 2 has only one solution, when x = 0, as we will see in Example 2.1.6.
We will prove in this work that periodic functions are uniformly almost periodic and
that the sum of two uniformly almost periodic functions is uniformly almost periodic,
consequently f is a uniformly almost periodic function. We can find the behaviour of
these functions in our lives, for example, if we consider Earth’s revolution around the Sun
at the same time that we consider Moon’s revolution around the Earth as we can see in

the following picture.

Figure 1.1: Earth’s and Moon’s Revolution

] wt

' Moon
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Our main goal is to understand Theorem 5.8.2. With that in mind, we start by
analysing and study uniformly almost periodic functions, which were introduced and
studied by H. Bohr. We introduce some basic definitions and examples that are going
to help us to understand the advanced concepts. After that we see some properties of
uniformly almost periodic functions to help us understand why these functions are so



CHAPTER 1. INTRODUCTION

important. Following that, we study the behaviour of a sequence of uniformly almost
periodic functions, its derivatives and integrals.

Afterwards, in Chapter 3, we examine a new class of so-called normal functions,
introduced by S. Bochner. We start by stating its definition and we will be able to
establish a relation between those functions and uniformly almost periodic functions,
that is, the definitions of uniformly almost periodic and normal functions, given by Bohr
and Bochner respectively, are indeed equivalent. Then we analyse the mean value of a
uniformly almost periodic function and some consequences about it, which will be really
important for the main result about uniformly almost periodic functions. Following
that we study Fourier series for uniformly almost periodic functions and we are going
to observe similarities with the original definition of Fourier series of periodic functions.
We finish Chapter 3 by proving that a function is uniformly almost periodic if and only
if it belongs to AP(R), that is, the smallest closed subset of L*°(R) that contains the set of
trigonometric polynomial functions.

In Chapter 4, we start by defining some spaces and functions that are really important,
the LP(R) spaces and step functions respectively, which will have a crucial role in this
work. Succeeding that we define the Fourier transform in L!(R) and we establish some
properties that will help us to understand advanced concepts. Then we examine the
definition of convolution and its applications in the Fourier transform. We finish Chapter
4 by generalizing the concept of the Fourier transform to L?(R), using the fact that, as we
will see in this work, the space L!(R) N L?(R) is dense in L*(R).

In Chapter 5, we start by giving some basic definitions regarding Functional Analysis
and, after that, we prove a theorem regarding Banach algebras that is going to aid us
during the remain part of the work. Following that we recall the definition of a max-
imal ideal and, with that being done, we establish some properties of maximal ideals.
Moreover, we prove results that relate maximal ideals and invertible elements of a unital
commutative Banach algebra. Then we study the multiplicative linear functionals of a
unital commutative Banach algebra which, taking into account Gelfand’s theory, are re-
lated in a special way to each other as we will see in Theorem 5.3.5. Then we define the
concept of an algebra embedded densely into another algebra and then we establish two
important theorems regarding extensions of multiplicative linear functionals. Following
that, we define the concept of a character in the unit circle and we recall the definition
of the Banach algebra I'(R). With that being done, we will prove that, in fact, I'(R) is
homeomorphic to the space of all characters of the unit circle.

Following that, we will be able to prove that the set AP(R) is a unital commutative
C*—subalgebra of L*°(R). Afterwards, using the things learned from the Fourier transform
in the previous chapter, we define the set M,(R) as the set of every Fourier multiplier
in LP(R), which are certain functions that satisfy some properties, and then we will be
able to give the definition of the set AP,(RR) as the closure of the set of trigonometric
polynomial functions in the norm of M,(R). Following that, we will be able to prove
that the algebra AP,(R) is embedded densely into the algebra AP(R), for each 1 <p < co.

2



Then we define the Banach algebra APW(R) and we prove that APW(R) is embedded
densely into AP,(R) and also embedded densely into AP(R). Moreover, we see that, in
fact, APW(R) is isometrically isomorphic to I!(R) and also that the Gelfand space of
APW (R) is homeomorphic to the Gelfand space of AP(R). After proving that the Gelfand
space of AP,(R) is homeomorphic to the Gelfand space of AP(R) and after characterizing
the invertible elements of AP,(R), we finish this work by proving that the set AP,(R) is
inverse-closed in AP(R).



2

UNIFORMLY ALMOSsT PEr1ioDIC FUNCTIONS

In this chapter we will start by presenting some simple definitions that will guide us to
define a uniformly almost periodic function. Following that, we will establish several

important properties of these functions.

2.1 First Definitions

In this section, we will always consider K =R or K=C.

Definition 2.1.1. Let X be a subset of R, that is, X CR. We say that X is relatively dense
in R if and only if there exists [ > 0 such that for any open interval ]a, b[ with length I,

X NJa,b[= 0.

If we analyse the previous definition we can conclude that if a set A is dense in R, then
A is relatively dense in R and if a set A is relatively dense in R and A C X, then X is also
relatively dense in R.

Example 2.1.2. We know that Q is dense in R and therefore Q is relatively dense in R. If
we consider the set of integer numbers, Z, we know that Z is not dense in R. However,
it is indeed relatively dense because if we choose I = 2 > 0 and choose any interval with

length [ = 2, for example |a,a + 2[, we can guarantee that
ZNla,a+2[=0,

and therefore Z is relatively dense in R.
On the other hand, the set of natural numbers, N, it is not relatively dense in R because

for every x > 0, there is an open interval | — x, 0[, with length x, such that
NN]-x0[= 0,
which means that, by definition, N is not a relatively dense set in R.

4
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Definition 2.1.3. Let f : R — K be a function. We say that 7 € R is a translation number
of f belonging to € > 0 if and only if

su}g If(x+7)—f(x)| < e.

From now on we are going to denote the set of all translation numbers of a function
f belonging to € > 0 by E. ;. With this definition we can deduce some properties of

translation numbers.

1. If t€eE.thenforallo>e, T€E; .
2. Ifte Ee,f then -t € Ee,f-

3. If 1y €E¢, yand 15 € E, s then 1) + 15 € E¢ ¢, -

Remark: It is important to observe that given € > 0, if the set E ; is relatively dense in
R, then for each 4, x € R there exists 7, € [-x+a,—x+a+[.] N E s such that x+7, € [a,a+]¢],
where [, > 0 verifies the condition for which any interval with length . intersects E r.
We are going to use this observation in some proofs established in this work.

Now, we have everything that we need in order to define a uniformly almost periodic

function.

Definition 2.1.4. Let f : R — K be a continuous function. We say that f is uniformly
almost periodic (u.a.p.) if and only if the set E. r is relatively dense for every € > 0. In this

work we will denote the set of all uniformly almost periodic functions by U(R).

As our intuition would tell us, in the following result we see that every periodic

function is also a u.a.p. function.
Lemma 2.1.5. If f is a continuous periodic function, then f is u.a.p.

Proof. If f is a continuous periodic function with period T > 0, then for each € > 0 the set
E¢ s contains all numbers of the form nT, with n € Z. Therefore for any € > 0 the set E ¢

is relatively dense in R, and we conclude that f is u.a.p. as we wanted to prove. O]
The following example show us the behaviour of a u.a.p. function that is not periodic.

Example 2.1.6. If we consider the function f(x) = cos(2mx) + cos(21rV2x) for every x € R,
f is not a periodic function because the only solution for f(x) = 2 is x = 0. In fact, if
we have cos(27x) = 1 and cos(2mtV2x) = 1, then 2mx = 21k; and 27V2x = 2mk,, with
ki,k, € Z. Since ky and k, are integer numbers, it follows that the equation k; = f/—% is only
satisfied if k; = k; = 0, therefore f is not a periodic function. However f is a uniformly
almost periodic function because we will prove in Theorem 2.3.5 that the sum of two

u.a.p. functions is a u.a.p. function.
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Figure 2.1: f(x) = cos(2mx) + cos(2mV2x), x€[-5,5].

3 T T T T T

Definition 2.1.7. Given a function f : R — Kand a € R, we define the translation function
T.f by
(Taf)(x):= f(x+a),

for every x e R.

We finish this section by checking that the translation function is always u.a.p. sup-

posing that our given function is u.a.p.
Lemma 2.1.8. If f is a u.a.p. function, then T, f is also u.a.p. for every a € R.

Proof. Leta,T € R and f be a u.a.p. function. Then

sup |[f(y +7) = f(p)l =sup |f (x+a+7) = f(x+a)| =sup |T,f (x+7) = T, f ()],
yeR xeR xeR

consequently, 7 is a translation number of f if and only if 7 is a translation number of T, f
for every a € R. Therefore the set E. 1,7 is relatively dense in R for eacha € R and € > 0,

and we conclude that T, f is u.a.p. as we wanted to prove. O

2.2 Boundedness, Uniform Continuity, and Inverse Closedness

In this sections we will analyse some topological properties of u.a.p. functions. Regarding

boundedness, we have the following result.

Theorem 2.2.1 ([4, Chapter 1, Section 1, Theorem 4]). If a function f : R — K is uniformly

almost periodic, then f is bounded.

Proof. Since f is a uniformly almost periodic function, it follows that E f is relatively
dense in R for every € > 0. Let € = 1. In these conditions E; f is relatively dense and

6



2.2. BOUNDEDNESS, UNIFORM CONTINUITY, AND INVERSE CLOSEDNESS

therefore there exists a positive number /; such that for any open interval ]a,b[ with
length [;,
El,f N ]ﬂ,b[ * 0

Consider the interval L = [0, [ ], with length [}, and let

max |f(x)] = M.

xel

For each x € R, we can find a number 7, € E; y such that x+ 7, € L. In factif y € R, then
there is 7, € [-y,—y+[;|NE} f that verifies 0 <y +7, <I; and thus y + 7, € L. Consequently

If(x+1y)| < M.

On the other hand, since 7, € Ey s, we can say, by definition of translation number of f,
that

If (x+7)—f(x)] < 1.

Adding both of these inequalities we conclude that for every x € R,

OOl = 1f )+ f(x+7) - fx+ 1)l < |f(x+n)l+If(x+1) - f(x)] < M+1.

Since x is an arbitrary real number and M does not depend on x, we have proved the

theorem. O

Now we will see that every u.a.p. function is, in fact, uniformly continuous.

Theorem 2.2.2 ([4, Chapter 1, Section 1, Theorem 5]). If a function f : R — K is uniformly

almost periodic, then f is uniformly continuous.

Proof. Let € > 0. Since f is a uniformly almost periodic function, the set E¢  is relatively

dense. Therefore there exists I¢ > 0 such that for any open interval ]a, b[ with length I,
Ecrnlab[+ 0.

Since f is continuous, for each x; € ]0,lc + 1[ there exists 6 € ]0,1[ such that for any
X7 G]O,l% + 1[,

bt =2l <8 = [f (1) = f(x2)] < 5.

Let x,y be two real numbers satisfying |x — y| < 0. In these conditions there is a number
T € E¢ r N |-min{x,p},—min{x,p} + /<[ such that x+ 7 €]0,/c +1[ and y+ 7 €]0, ¢ +1[. Thus
the inequality

frro-fH+ol<3

is indeed true. On the other hand, since 7 € Egyf, for any x € R we have

[flx+7)—f¥)l <

W[ o
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Consequently, it follows that

lf)=f@I=1f ()= f@) +fx+1) = flx+T)+ f(y+7) = fy+7)
<Ifx+0) - fOI+If+0) - fOI+If(x+7) = f(y +7)l

€ € €
<=+-+=-=¢
3 3 3
and we can conclude that f is uniformly continuous. O]

The following result is an immediate consequence of the fact that every u.a.p. function

is uniformly continuous.

Corollary 2.2.3 ([4, Chapter 1, Section 1, Corollary 5]). Let f be a u.a.p. function and let
€ > 0. Then there exists 6. > 0 such that

]_66’66[ - Ee,f-

Proof. Let f be a u.a.p. function and € > 0. Using Theorem 2.2.2 we can assure that f is

uniformly continuous and therefore there exists a 6. > 0 such that for every x,y € R,
=yl <oe = |f(x)-fy)l<e
Let T €] - O, 6.[ and consider x € R. It follows that
x+T—xl=ltl <5, = If(x+1)-f(x)l<e,

and thus we have that

suﬁg If(x+7)—f(x)| <e.

That is, 7 € E¢ y and we can conclude that | -6, 6¢[ C Ee . O

We finish this section by verifying the inverse closedness of u.a.p. functions, that is, if

f € U(R) and if the function ]l( is well defined, then Jl( € U(R).

Theorem 2.2.4 ([4, Chapter 1, Section 1, Theorem 7]). If f is a uniformly almost periodic
function and if

inf |f(x)|=m > 0,
xeR

then the function jl[ is also uniformly almost periodic.

Proof. Let € >0 and let 7 € E. r. In these conditions
sup [f(x+ 1)~ f(x)| < e.
xeR
Since
inf —m,
inf |f (<)) = m
it follows that

1
VXER, 'm

8




2.3. ALGEBRAIC PROPERTIES OF U.A.P. FUNCTIONS

and therefore
€

' 11 :‘f(x+’c)—f(x) <€
flr+r) fOl [ flx+1)-flx) |7 m?

Under these circumstances the set E ¢ is contained in the set E <1 and, consequently, the

latter set is relatively dense because the former one is relatively dense by our hypothesis.
O

2.3 Algebraic Properties of u.a.p. Functions
We start this section by seeing simple, but useful, algebraic properties of u.a.p. functions.

Theorem 2.3.1 ([4, Chapter 1, Section 1, Theorem 6]). Let A € C and let f be a u.a.p.

unction. Then the functions Af, fand f? are also w.a.p. functions.
p

Proof. Since f is a u.a.p. function, by Theorem 2.2.1, f is bounded and therefore there is
a number M > 0 such that

sup |f (x)] < M.
xeR

Let € >0 and let 7 € E. ;. In these conditions we know that

sup [f(x+1)-f(x)| < e

Using this condition and the fact that f is bounded we obtain

sup f(x+7)-f(x)| = sup If(x+1)=f(x)] < e

sup [1f (x+ 1) =Af (] = W-sup If (x+ 1) f 0l < - € =z e,

sup |f2(x+7) = f2(x)| = sup |f (x + T) = f(x)| - |f (x+ 7) + £ (x)

xeR xeR
<e-(M+M)=2Me =:¢,.

Therefore we can conclude that the set E ; is contained in the sets E_ 7 Ee af and E, r2,
that is, these 3 sets are relatively dense in R. Thus f,Af and f? are uniformly almost

periodic. 0
Given x € K and A CK, as usual, we define the distance from x to A as
d(x,A):=inf {{x—y|: y € A}.

Despite the fact that the previous theorem was not hard to prove, that does not happen
if one try to prove that the sum of two u.a.p. functions is u.a.p. From now on, until

Theorem 2.3.4, we are going to establish some lemmas that will aid us to prove that fact.

9
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Lemma 2.3.2 ([4, Chapter 1, Section 1, Lemma 9]). For every €1,€, > 0, with €; > €1, there

exists a O, ¢, > 0 such that E¢, r contains any number t that satisfies
d(T,Ee, f) < O, e,-
Proof. Since €, > €, it follows that
€3:=€p—€1 >0,
and applying Corollary 2.2.3, we can see that there exists a 6., > 0 such that
| =0e,,06,[ C Ee, f-

Let 7y € E,, s and consider 13 € E., ¢. Using the property of the sum of translation num-
bers, we have that

Ty:=T1+T3 € E€1+€3,f = Eez,f’

and since | - d,, O, is contained in E,, , it follows that if a € R satisfies d(a, E, f) < dc,,
then a=b+cwhereb € E., r and ¢ €]-6,,6,[C E, s and thus a € E, ;. Therefore we can
conclude that E., ¢ contains any number 7 that verifies d(t,E, r) < o, as we wanted to

prove. O

Lemma 2.3.3 ([4, Chapter 1, Section 1, Lemma 10]). Let €,6 > 0 and fi, f, be uniformly

almost periodic functions. Then the set
{te Ee,ﬁ : d(T'Ee,fz) <6}
is relatively dense.

Proof. Since f; and f; are u.a.p. functions, we can assure that the sets E¢ s and E¢ g,
are relatively dense, therefore there exist /;,I; > 0 such that any interval with length [;
intersects E¢ r, and every interval with length I, intersects E¢ r,. Then there is k € N that
satisfies

I:=k-6>max {ly,1,}.

For every n € Z, consider the intervals [(n —1)I, nl]. It is obvious that these intervals have
length I and

U [(m=1),nl]=R.

nez
Since | > max {l,1,}, it follows that for any n € Z, there exist Tin), T;n) € |(n—1)l,nl[ such
that

() (n)
(2 EE%’fI /\T2 EE%fz’

and consequently

-l < Ti") - T:(zn) <l

Let
I;=[(i-1)o,i0],

10



2.3. ALGEBRAIC PROPERTIES OF U.A.P. FUNCTIONS

forany i e {-k+1,...,k}. In these conditions for every n € Z, there is i € {-k+1,...,k} such
that

Tin) - T;n) €l

It is not hard to see that there exists ny € N and there is i € {—-k + 1,..., k} such that for any

n € Z, there corresponds an integer number 1, € [—ng, ny] satisfying

TYI) - T;n) el; A T{”l) —Té"l) €l

That is, T{n) - Tén) and Tinl) - Té”l) belong to the same interval I;, hence thereis A € |- 1,1
verifying

T{n) - Tén) = Ti”l) - ’l’énl) +1-6 & T{n) - Tinl) = Tén) - ’l’énl) +A-06.
Since TY“,TY”) €E¢p and Tén), Ténl) € E¢ r,, applying proprieties of translation numbers,
we get that T{n) - Tinl) € E. s, and Tén) - T;_nl) € E. f,, consequently we have that

(2 =) - (1 — M) = s < s,

and thus we can guarantee that

d (T{n) - Tinl), Ee,fz) <9

We can see that for every n € Z, Tin) €l(n—1)l,nl[ and ’CYIH) €|nl,(n+ 1)I[ which implies
that
I =" < 1) = (- 1)1 = 21,

and due to the fact that ny,(n + 1); € [-ng,ng] for every n € Z, we can also see that
(n)y _(n+1)

T, €|(—ng — 1)1, nyl[ which implies that
2 gl = (—ng - 1) = 2mg1 + 1.

Then for each n € Z,

|(T{n) T;nl)) (TinJrl) n+1 )| _ |( _ T1n+1)) n (Tirwl)l _ Tin)l)l
< |T1 _ T1n+1 |+| 1n+1)1 _ Tin)1|

<21+ (2Ing+1)=(12ng+3) =13,
hence we can assure that the set W := {Tin) - Tin)l : n € Z} is relatively dense, therefore we
conclude that
{te Ee,ﬁ : d(T’EE,fz) <o)

is also relatively dense in R because it contains the set W. O]

Theorem 2.3.4 ([4, Chapter 1, Section 1, Theorem 11]). If € > 0 and if f; and f, are uni-

formly almost periodic functions, then the set E. r N E g, is relatively dense.

11



CHAPTER 2. UNIFORMLY ALMOST PERIODIC FUNCTIONS

Proof. Lete > ey > 0. Applying Lemma 2.3.2 there exists a 6., > 0 such that E 7 contains
any number 7 that satisfies
d(T,Ee, f,) < Oc,e,-

Since f; and f, are u.a.p. functions, using Lemma 2.3.3 we can assure that the set
{’l’ € E€1,f2 : d(T, Eehfl) < 66,61 },

is relatively dense. Taking into account that €; < € and considering the previous state-

ments, it follows that
{te E€1rfz : d(T’Eepfl) < 55,61} Cire E€1,f2 1 TE Ee,fl} = Eel’f2 mEe,fl’

and due to the fact that the former set is relatively dense, E. r, N E., ¢, is also relatively
dense. Since €; < € we have that E. ¢ C E. r, and we conclude that E, ;, NE ;, is relatively
dense. O]

With that being said, we are now in conditions to prove that the sum of two u.a.p.

functions is a u.a.p. function.

Theorem 2.3.5 ([4, Chapter 1, Section 1, Theorem 12]). If f; and f, are uniformly almost

periodic functions, then fi + f, is uniformly almost periodic function as well.

Proof. Lete >0andlett € Ec s NE¢ . Then T € E¢ ¢ and 7 € E¢ p,, therefore it follows
that

sup |fo(x + 1) = fo(x)| <

xeR

sup |fi(x+ 1) = fi(x)| <

xeR

N m

€
2;

In these conditions we can guarantee that

sup |(fi + 2)(x +T) = (fi + 2)(¥)| = sup |[fi(x+ 1) + fo(x +7) = f1(x) = fo(x)]

xeR xeR
< sup [fi(x+ 1) = fi(x)[+sup | foa(x+ T) - fo(x)|
xeR xeR
< E + E —
=3 5 = €.

We have proved that if 7 € Ecr NEc then T € Ec 1y, that is
E%’fl nE%’fz - Ee,f1+f2- (2.1)

Applying Theorem 2.3.4 we know that E¢ ¢ NEc¢ y, is relatively dense in R and, by (2.1),
we conclude that E. 7, , 1, is relatively dense in R for each € > 0, that is, fi + f, is a uniformly

almost periodic function. O

Applying the previous results of this section regarding algebraic properties of u.a.p.

functions, we have that the product of two u.a.p. functions is also a u.a.p. function.

Theorem 2.3.6 ([4, Chapter 1, Section 1, Theorem 13)). If f; and f, are uniformly almost

periodic functions then fi - f, is also uniformly almost periodic.

12
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Proof. Firstly let us observe that for any x e R,

Fix) fol) = () + o) = 3 () = Foo)?

Since f; and f, are u.a.p. functions, applying Theorems 2.3.1 and 2.3.5, we conclude that

f1- f2 is u.a.p. as we wanted to prove. O]

We finish this section by seeing that the quotient of two u.a.p. functions is also a u.a.p.
function, as a consequence of the previous theorem and the inverse closedness of u.a.p.

functions.

Corollary 2.3.7 ([4, Chapter 1, Section 1, Corollary 13)). If f; and f, are uniformly almost
periodic functions and
1nf |fr(x)] > 0,

then % is uniformly almost periodic.

Proof. We know that i = fl- . Applying Theorem 2.2.4, we conclude that + is uniformly

7
almost periodic and thus, by using Theorem 2.3.6, we deduce that f1 {T is uniformly

almost periodic as we wanted. O

2.4 Limits of Sequences of u.a.p. Functions

In this section we will analyse the behaviour of a sequence of u.a.p. functions that con-

verge uniformly to a certain function.

Definition 2.4.1. Let (f,),cn be a sequence of functions such that f, : R — K for each
n € N. We say that (f,),en is uniformly convergent to a function f : R — K if and only if
for each € > 0 there exists p € N such that for any x € R if n > p, then

fu(x) = f(x)| <e.

Theorem 2.4.2 ([4, Chapter 1, Section 1, Theorem 8]). Let (f,),en be a sequence of u.a.p
functions such that (f,),en converges uniformly in R to a function f. Then f is also a u.a.p.

function.

Proof. Let € > 0. Since (f,) converges uniformly to f, there exists p € N such that for every
x eR,

|f (x) = fp(x)] <
Lette ng and x € R. Then
3’Jp

[SSENO)

Su}g |fp(x+ 7) _fp(x) <

therefore we have

[fx+) = fOI=1f (x+T) = f(X) + fp(x +7) = fyy(x +T) + fp(x) = fp(x)

13



CHAPTER 2. UNIFORMLY ALMOST PERIODIC FUNCTIONS

and thus 7 € E. 7, that is, E%’fp C E. . Since the former set is relatively dense, it follows

that E. r is also relatively dense, and therefore f is uniformly almost periodic. O]

We finish this section by verifying that the sum of any uniformly convergent trigono-

metric series is also a u.a.p. function.

Corollary 2.4.3 ([4, Chapter 1, Section 1, Corollary 12]). Let c¢,, € C and A, € R for every

n € N. If the series chei/‘”’“ is uniformly convergent, then its sum is u.a.p.
n=1
Proof. We know that c,e’*»* is a purely periodic function and therefore, applying Lemma

2.1.5, is a u.a.p. function, thus if we consider a sequence f,(x) = c,e'**, f, is a u.a.p.

n
function for every n € N and using Theorem 2.3.5 we get that ka is also uniformly

k=1
almost periodic. Since the series is uniformly convergent, we just need to apply Theorem

2.4.2 and the proof is done. O

2.5 Derivatives and Integrals of u.a.p. Functions

We start this section by seeing that if a real function is u.a.p. and if its derivative is

uniformly continuous in R, then it is also a u.a.p. function.

Theorem 2.5.1 ([4, Chapter 1, Section 1, Theorem 14]). Let f be a real u.a.p. function. If

the derivative of f, f’, is uniformly continuous in R, then it is also uniformly almost periodic.

Proof. Let € > 0 and let (h,),cn be a sequence of real numbers such that h, # 0 for every
neN, and
lim h,, = 0.

n—-oo
Since f is differentiable, applying Lagrange’s mean value theorem, it follows that for
every n € Nand x € R, there exists A, , € |0, 1[ such that

T —
(T ) = LIS

Due to the fact that f and T, f are u.a.p. functions for every a € R, applying Theorem 2.3.1
and Theorem 2.3.5 we have that T, ;, f’is u.a.p. for every n € N. Since f’ is uniformly
continuous in R, there exists o, > 0 such that for each x,y € R,

lx—pl<oe=If"(x)- f'(¥)<e. (2.2)
Since A, , €]0, 1] for each n € N and for any x € R, it follows that for every x € R,

lim [x+ A,  h, —x| < lim |h,| = 0.
n—-oo

n—-oo

14



2.5. DERIVATIVES AND INTEGRALS OF U.A.P. FUNCTIONS

Consequently there exists p € N, which does not depend on x, such that if n > p, then
Ix + Ay xhy — x| < |hy| < 0.
Therefore if n > p, applying the previous inequality to the condition (2.2), we have that

[f'(x+ Ach) = £/ ) = Ty, o, f) () = f ()] < €

for each x € R. Consequently (T) j f’)sen is a sequence of u.a.p. functions that converge

n,x

uniformly in R to f’ and we conclude, by Theorem 2.4.2, that f’ is uniformly almost

periodic. ]

We finish this chapter by checking that any bounded indefinite integral of a u.a.p.

function is also a u.a.p. function.

Theorem 2.5.2 ([4, Chapter 1, Section 1, Theorem 15]). If an indefinite integral of a u.a.p.

function f is bounded, then it is a uniformly almost periodic function.

Proof. Let us consider, without loss of generality, that f is a real function and let a € R.

Let us assume that .
s = [ fwdy

is bounded, that is, there are k;,k; € R such that
ki =inf g(x), k, =sup g(x).
xeR xeR

Let # > 0. In these conditions we can assure that there are x;, x, € R such that

g(x)) <ki+1, glx2)>ky—1.

Lete; >0, 1 € E. r and d = |x; — x1|. In these circumstances it follows that

J::i:l f(x)dx— J:zf(x) dx

g (2 +71) + g(x1) —g(xy +11) — g(x2)| < €14.

fz[f(xﬂl)—f(x)] dx | <eid,

that is

Therefore we have
g(xy +11) S g(xo +71) — g(x2) + g(x1) + €14, (2.3)
and since

ky =sup g(x), g(x1)<ki+n, g(x)>ky—n,
xeR

we have that
gxo+ 1) <ky  g(x2)—g(x1) > ky—ky =21, (2.4)

and consequently, using the inequalities given in (2.3) and (2.4), we have
g(X1+T1)<k1+21’]+€1d. (25)

15



CHAPTER 2. UNIFORMLY ALMOST PERIODIC FUNCTIONS

Let €, > 0 which will be defined later on and let 7; € E, ¢. Repeating the same argument
and justifications as we did previously and observing that 7; + 7 € E¢ ., s, we conclude
that

g(x1+ 71+ 1) <ky +2n+ (€1 + €2)d. (2.6)

Using the fact that E. | r is relatively dense, there is I, > 0 such that any interval with

length [, intersects E, ;. Given x € R, we can choose 73 € E, ; satisfying the inequalities
X<Xp+7T3, X +T3<x+l

thus we have

X+T) X1+T+T3 X1+7T3

.ﬂwdy=f+ ﬂwdy+f )~ f+ )] dy. (2.7)

X

Taking into account that g(x) > k; for each x € R, it follows that
-g(x1+13) <~-ky, gx1+1+713) 2k
and applying inequality (2.6) with 7; = 73 and the fact that

—-g(x1 +13) < —ky,

we get
X1+Tr+T3
[ rwax| =l v mr ) g sl <2 e vt (28
X1+T3
Since
Xx<x1+713, Xx1+T3<x+l,
we see that

x+le,
<J\ f@+ ) - fo)l dy < ele.. (2.9)

‘ LXﬁTS[f(}?) — fy+1,)] dy

Consequently using equation (2.7) and inequalities (2.8) and (2.9), we have

‘ Lxﬂzf (v) dy

Given € > 0, if we consider

<2n+ (€1 +e€x)d + eyl

_ee_e €, =min\« € ¢
I e LT &

we obtain that

X+Tp € € €
e n)-gol= | [ fmdy|<5e5e5=e
X
for every x € R and for any 7, € E, ¢, therefore we can conclude that E., s C E ,, that is,
E. ¢ is relatively dense as we wanted to prove. O
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3

RerLATIONS BETWEEN NoOorRMAL, U.A.P.
AND TRIGONOMETRIC POLYNOMIAL

FuNncTIiONS

In this chapter we will start by introducing the class of normal functions and, in the
same section, we are going to prove that this new class coincides with the set U(R). After
defining the mean value of a u.a.p. function, we will verify that, in fact, the mean value
of a u.a.p. function always exists. Following that, we are going to give an alternative
definition of the mean value and we will present some properties of it. Afterwards, we
will not only construct the Fourier series for a u.a.p. function, by defining its Fourier
coefficients as the mean value of product between that function and the function e_),
where e) (x) := e!** for each x € R, but also establish Bessel’s inequality. Moreover, we will
study some properties of the Fourier series regarding sequences of u.a.p. functions and
also the uniqueness of the Fourier series for these functions. We finish this chapter by
verifying that the closure, on L*(RR), of the set of trigonometric polynomial functions, is
equal to the set U(R).

3.1 Normal Functions
We start this section by recalling a well known definition from Functional Analysis.

Definition 3.1.1. Let (f,),en be a sequence of functions such that f, : R — K for each
n € N. We say that (f,,)y is uniformly Cauchy if and only if for each € > 0 there exists p € N
such that for any x e R if m,n > p, then

|fu (%) = fn(x)| <€

Definition 3.1.2. Let f : R — K be a continuous function. We say that f is normal if
and only if for any sequence (h,,),cy of real numbers, there exists a subsequence (h,, )ren
such that (Th”k f)ken is a uniformly convergent sequence of functions. In this work we will
denote the set of all normal functions by N(R).

17



CHAPTER 3. RELATIONS BETWEEN NORMAL, U.A.P. AND TRIGONOMETRIC
POLYNOMIAL FUNCTIONS

In order to understand the relation between u.a.p. functions and normal functions,

we will need the following result.

Theorem 3.1.3 ([4, Chapter 1, Section 2, Lemma 2]). Let f be a u.a.p. function and (h,,),en
a sequence of real numbers. Then for any € > 0 there corresponds a subsequence (h, )ren of

(h,))neN Such that
sup |f(x+hni)—f(x+hn],)| <€,

xeR

foranyi,jeN.

Proof. Let e > 0. Taking into account that f is a u.a.p. function, there exists lc > 0 such

that any interval with length [¢ intersects E¢ ¢. For each n € N we can say that
hy=1t,+1,

where 1, € E¢ ¢ and r, is a real number satisfying the inequalities 0 <7, <Ic. Let r be
the limit of some convergent subsequence of (r,),cy, which indeed exists because every
bounded sequence admits a convergent subsequence, and consider 6 > 0 such that for
each x1,x, € R,

b2 =1 <28 = 1f (x2) = flx)l < 5.

In fact, this o exists because, by Theorem 2.2.2, f is uniformly continuous. Consider the

subsequence (h,, )rey formed by every h,, that verifies
r—0<r,<r+0.

Since T, — Ty, € E< s and |r,,, - rn/.| <20 for each 7,j €N, it follows that

w|mn
| m

€
sup |f(x+Tn,- _Tn]- +rn,- _rnj)_f(x"'rni —7’”].)| < El sup |f(x+rn,- _rn]-)_f(x)| <
xeR xeR

Consequently we have

sup |f(x+hy) = fx+hy )l = sup |[f(y = by, +hy ) = f(3)]
xeR yeR

= sup |f (x+ Ty, + 1y, = Ty, — 1) = f (%)
xeR

<sup |f(x+ Ty, =Ty, + 1y, =1 ) = f (x4 10, — 1)

xeR
€ €
+sup |f(x+rni—rn/)—f(x)|<§+§:e.
xeR

O

Now we shall see that a function is u.a.p. if and only if it is normal, that is, the set of
all u.a.p. functions coincides with the set of all normal functions. Having that in mind,
we will start to prove that the set of all uniformly almost periodic functions is contained

in the set of all normal functions.

18



3.1. NORMAL FUNCTIONS

Theorem 3.1.4 ([4, Chapter 1, Section 2, Theorem 3]). If a function f is uniformly almost
periodic, then f is normal.

Proof. Let (h,),en be a sequence of real numbers. Since f is a u.a.p. function, we can
apply Theorem 3.1.3 and assure that for any € > 0 there exists a subsequence of (h,,),en,

for example (hifk))keN, such that for any 7,j € N,

sup |f (x +hiy)) — f(x + b)) < e.
xeR

Consider € = 1. In these conditions there is a subsequence (hsdlk))keN of the sequence (h;,),,en

such that
Ly _ s
sup |f (x+hy,) = f(x+hy/)| < 1.
xeR
1

Put e = % In these circumstances there exists a subsequence (hgli))ng of the sequence
(h!))en, that verifies
(

1
sup [f(x+hy2)) = f(x+hy
xeR

[l YT

) 1
<=
<
1 1
Let € = % In this case there is a subsequence (hfqi))keN of the sequence (hffk))keN that
satisfies the inequality

(3) (3) 1
sup |[f(x+hy )= f(x+hy) )l < 3

j
xeR

Repeating this reasoning, we can assure that the sequence (T (1, f)ien, verifies for every
ny
i,jeNwithi<j,
(1) ()
sup |f(x+hy, )= f(x+hy

i )| <-
xeR ! 1

1 1
due to the fact that (h(ni))keN is a subsequence of (h;;))keN. Consequently (T 1, f)en is a

Ilk
uniformly Cauchy sequence, which implies that this sequence is also uniformly conver-

gent because K is complete, and we conclude that f is normal. O]

We finish this section by proving that N(R) C U(R), therefore, taking into account the
previous theorem, we have, in fact, the equality N(R) = U(R).

Theorem 3.1.5 ([4, Chapter 1, Section 2, Theorem 4]). If a function f is normal, then f is
uniformly almost periodic.

Proof. Suppose, by contradiction, that f is not uniformly almost periodic. Then we can
assure that there exists an € > 0 such that E. r is not relatively dense. Let h; € R and
consider an interval |a,, b,[ with length greater than 2|h;|, where the interval |a,, b,[ does

not contain any number of E. s. Let

_[Il2+b2

h, 5
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In these conditions it follows that h,~h; € |ay, by[ and consequently hy~h; € E, ¢. Consider
now an interval |az, b3[C R with length greater than 2(|h;| + |h;,|) and which does not

contain any number of E. . Put

as + bz

-

In these circumstances we have that h3 —hy, h3 —h, € ]as, bs[, hence h3 —hy,h3 —h, € E. ;.

I’l3=

Repeating this reasoning, we can find a sequence (h,,),cn, such that for any 7,j € N,
h; — h] Z Ee,fr

and therefore we have

sup |f(x+h;) = f(x+hj)| > e.
xeR

Consequently, given a sequence (h,),cn, the corresponding sequence (T}, f),en does not
have any subsequence which is uniformly Cauchy. Therefore, due to the fact that K is
a Banach space, the sequence (T}, f),en does not have any uniformly convergent subse-
quence. But this is a contradiction because f is normal by our hypothesis, thus we have

that f is uniformly almost periodic as we wanted to prove. ]

3.2 Mean Value of a u.a.p. Function
We start this section by defining the mean value of a u.a.p. function.

Definition 3.2.1. Let f be a real u.a.p. function. We define the upper (respectively lower)
mean value of the function f, and we denote by ]\_/If, (respectively M ¢) as being

_ 1 (? 1 (?
M =limsu (—J- (x) dx), M, = liminf (—J (x) dx).
4 y%+o<>p v Jo / f 7 e \y g /

If Mf = M then we denote their common value by My and we say that My is the mean
value of the function f. On the other hand, if f is a complex function, then we only define

. I
e

If we have a function f of n variables, then we indicate the variable with respect to

the mean value Mf as

which the mean is being calculated, for example,

The following lemma shows that if the mean value of a u.a.p. function exists, then it

coincides precisely with the mean value of the translation function.

Lemma 3.2.2. Let a € R. If f is a u.a.p. function and if My exists, then Mr ¢ exists and is
equal to My.
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Proof. Since f is a u.a.p. function, it follows, by Theorem 2.2.1, that f is bounded and
thus there exists 0 € R* such that for every x € R we have |f(x)| < 9, therefore we get

1 a
;L f(x)dx

which implies that

lim

y—>+00

a
< lim 1J f(x) dx < lim = 6d _ @y,
y4>+ooy 0 y~>+ooy +OO

lim f f(x (3.1)

y—+o0 y

And we also have

1 y+a 1 y+a 1 v+a [16
lim |— fi(x lim —j If(x)| dx < lim — odx=——=0,
y—+00 y v y—>+oo}) Y y—>+ooy v +00
which implies that
1 y+a
lim — =0. 3.2
y—+o00 y f ( )

Consequently, taking into account the equations (3.1) and (3.2), we have that

1 (?
Mg = lim = | (Tof)) dx
1 "y
= lim — | f(x+a)dx
y4>+ooydo

1 (‘y+ﬂ
= lim — )dx— lim —
y—)+00yd0 f( y—)+00yJ\ f
1 ("y y+a
= lim — dx+ lim - x)dx-0
y—)+00}}d0 f( ) y—H—ooy f

O]

The next result is a well-known fact from a basic analysis course (see, e.g., [16, Sec-
tion 3.2.4, Theorem 4]), which is similar to Cauchy’s criterion for sequences. For the

convenience of the reader, we give its proof below.

Lemma 3.2.3. Let f : R — K be a function. If for every € > 0 there exists M > 0 such that

If(x)-f(p)l<e

for each x,y > M, then the finite limit lim f(x) exists.

X—+00
Proof. Suppose, without loss of generality, that f is a real function and let (x,,),en
sequence of real numbers tending to +co. Then we know that the sequence (f(x,)),ecn has
a monotone subsequence (f(xn].))jeN. Let € = 1. Then, by our hypothesis, there is M; >0
such that

[f(x)=f¥)l <1
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for each x,y > M;. Consequently,
f(My+1)-1<f(x)<1l+f(M;+1)

for every x > M. Since

lim x,,, = 400,
j—>oo

there exists p € N such that if j > p, then Xp, > M. Consider

a:=min{f(M; + 1)—1,f(xn1),...,f(xnp)}, b:=max{f(M; +1)+1,f(xy,),..., f(xn )}

P
In these conditions we have that

an(xn],)Sb

for each j € N, therefore the sequence (f(xn].))]-eN is a bounded sequence. Taking into ac-
count that (f (xnj)) jeN is also monotone, we get that the sequence (f (xn]_)) jeN 1s convergent
to some L € R. Let € > 0. Then there is M > 0 such that

€
Fx)- I <5
for each x,y > M. Due to the fact that

lim x,, = +oo,

n—-,oo

there exists N € N such that if n > N, then x,, > M. Since

lim x,,, = 400,
jooo

there is J; € N such that if j > J;, then Xy, > M. On the other hand, since

lim f(x,l],) =1L,

j—ooo

there exists J, € N such that if j > ], then

f (o)=Ll < 5.

Consider K := max{J;,/>} + 1. In these conditions if n > N, then
€ €
£ (0n) = LIS 1f (i) = f O 1+ 1 (i) - Ll < 5 45 =
and, consequently, we have that
lim f(x,)=L.

n—00
We have yet to prove that the sequence (f(x,)),en converge to the same finite limit,
regardless of the choice of the sequence (x,,),cy tending to +oo. Let (u,,),en and (v,,),en
be sequences that tend to +oo. Then, the sequences (f(u;)),en and (f(v,))qen converge to

some L, K € R, respectively. Let us define the sequence (w),),cn by

u,, if niseven,

v,, if nisodd.
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In these conditions we have that (w,),cy tends to +oo, hence the sequence (f(w;)),en
converges to some P € R. But, by definition, the sequences (f(u,)),en and (f (v,))nen are
subsequences of the sequence (f(w,)),cn, therefore they also converge to P. Hence, by
the uniqueness of the limit in R, we have that L = K. Due to the fact that Cauchy’s limit
definition and Heine’s limit definition are equivalent, we conclude that the finite limit

lim f(x) exists as we wanted to prove. O]
X—00
As we will check, the mean value of a u.a.p. function always exists.

Theorem 3.2.4 ([4, Chapter 1, Section 3, Theorem 2]). If f is a uniformly almost periodic

unction, then M exists.
f

Proof. Since
n—1

[0,nz] = U [kz, (k+1)z]

k=0

for each n € Nand z > 0, it follows from the properties of integrals that

for every n € Nand z > 0. Let € > 0. Due to the fact that f is a u.a.p. function, we know
that E. r is relatively dense and therefore there exists I, > 0 such that any interval with
length /¢ intersects E¢ . Let n € Nand z> 0. Given k € {0, 1,...,n— 1}, consider the interval
|kz,kz+1.[. In these circumstances the interval |kz, kz+1.[ has length /. and, consequently,

there exists a number 7 € Jkz,kz + [ N E f. In these conditions we can assure that

(k+1)z (k+1)z—7
fk f(x) dx = f(y+ 1) dy

z Jkz—7;

r(k+1)z—1;

= fx+7y)dx
J kZ—Tk

rz z

= f(x)dx+f0[f(x+’ck)—f(x)]dx

JO

0 (k+1)z—1y

+ f(x+rk)dx+J- f(x+1) dx

kz—1; z
= Il +12+I3+I4.

Since f is a u.a.p. function, it follows that

sup If(x+ 1) = f(x)| <€

and thus

L = \ jo Flx+ 1)~ f(x)] dx

SLZIf(x+Tk)—f(x)| dx < Lze dx = ez.
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Let
A= sup |f (x)].

xeR
We can see that the length of the range of integration in both I3 and I, is less than [,
therefore we have that
|I3| < Al., |I4] < Al,.

Hence for every k €{0,...,n— 1} there exists Ay € C such that |1;| <1, and A verifies

(k+1)z z
j f(x)dx= j f(x) dx+ Ag(ez+ 2Al,).
k 0

z

Consequently
1=l pktl)z 1207 2
- Z f f(x)dx== U F(x) dx+ A (ez+ 2Ale)],
% =0 Jke %= Lo
that is,
1 [ 1(? 1= 2AI
EJ; f(x)dx:ZJ;f(x)dx+E§/\k(e+ > ), (3.3)
n-1
where A3, := 1 Z/\k satisfies |1},| < 1. Consider 7 > 0 as small as we please. If
k=0

ﬂ) 16Al. 1 n
(17>86(:)6<8 , (17>—Z ©z<16Ale ,

then we can see that there exists 6,, € C that verifies |6,| <1 and also

1 nz B 1 z 1/]
EJ; f(x) dx_;jo f(x) d“e”Z' (3.4)

Given y > z, there exists n, € N such that y € [n,z,(n, + 1)z[ and thus there is A, € [0,1]
such that
y=(1-Ay)nyz+ Ay(ny + 1)z = (n, + A,)z.

Since f is a u.a.p. function, we can assure by Theorem 2.2.1 that f is bounded and hence
there exists M € R™ such that for every x € R we have |f(x)| < M. Consequently we get
that

n,z

1 (Y 1 y
A Fg e | 7 dx

(ny+4,)z nyz
! L f(x) dx—L f(x)dx

(ny+Ay)z nyz Jo
_/\y nyz
_ (x) dx
ny(ny, +Ay)z jo f
1 ( +A

)z
+ —(ny Az Lyz f(x)dx

/\y %4 1 (ny+1y)z
S—I Mdx+ ——— J M dx
ny(ny +Ay)z Jo (ny +Ay)z "z
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M)\y MAy 2M/\y M
= = < _,
ny + /\y 1y + /\y ny + /\y 1y

and thus we can assure that

lim J fi(x dx——j x)dx| < lim %:O.
y—+00 Y—+0o ny
Therefore there exists yy > 0 such that for every v > v,
1 f? 1 (" 1
- | f(x) dx——J f(x)dx|<—. (3.5)
' v Jo nyz Jo 4

Let y1,9, > yo. Then we can assure that there exist 11,1, € N such that y; € [nyz,(n] + 1)z]
and v, € [n,z,(n, + 1)z[. Applying equation (3.4), we can guarantee that

1 Tl]Z
— _ ) d
ey S ], S

Taking into account inequalities (3.5) and (3.6), it follows that

9n14 %Z < Z (3.6)

1 ylf dx——f f(x)dx LJnlzf(x)dx—L Fnzzf(x)dx
311 nz Jo 1z Jo
1 1 1z
+ o fx)dX—m . f(x)dx
1 1 [M?
v RC iz )y T
<g+Z+ﬂ 1,

and thus we have 1

Y1
}’1 f dx——f f(x)dx

for each y;,v, > yy. Taking into account the previous inequality and Lemma 3.2.3, we

o= (5, oo

indeed exists and is a finite value as we wanted to prove. O

<7,

conclude that the limit

In the following result we will see an alternative way to compute the mean value of a

u.a.p. function.

Theorem 3.2.5 ([4, Chapter 1, Section 3, Theorem 2]). If f is a u.a.p. function, then

f_hm f

Zo0 Z )z

N

Proof. Let €,z > 0. Taking into account equation (3.3) from the previous Theorem, we get
that L
"~z Io

2Al ’

AT = 1lim A} =

n—-oo €+ ===
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n-1
where A}, := %ZA;{ and A" satisfies [1*| < 1, consequently, the limit of A}, when n — oo
k=0
exists. Organizing both sides of the previous equation, we have that
1 (* 2AI1
_—J- f(x)dx+/\*(e+ 6). (3.7)
Z Jo Z
The term A~ (e 241, ) is the error of the representation of My by the integral
1 z
- d
;| reax

and the term A* (e 4 24l )

depends on €, A, . and z. The elements € and z are independent
of the function f, but A and /. depend on the function f. Given a € R, we can guarantee
that the translation function T,f has the same values for I, and A as the function f,

consequently it follows from equation (3.7) that
2Al
Mr = (T, ¥ <.
T.f = J- f)x)dx+ A ( . )

Applying Lemma 3.2.2 we can assure that My = Mr ¢, therefore we have, by the previous

a+z
_ lf F(x) dx+A*(e+ ZAZE),
z J, z

which implies, in particular, that

equation, that

My f x)dx+ A" e+2Al€ .
z

-3
Let 6 > 0 and consider € so small that € < %. Due to the fact that

2A
lim le

z—o00 Z

=0,

there exists p € N such thatif z> p, then 24k < 2 In these conditions if z > p, then

o

That is, the integral
1 a+z
p f f(x)dx (3.8)
a

converges uniformly in a € R to My when z — oo, hence we conclude that

2Al
<e+

5 5
Cc—+==04.
272

Mf—hm f( ) dx

zZo>0 Z ) 2z

2
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3.2. MEAN VALUE OF A U.A.P. FUNCTION

Given x € R and a function f : R — K, we are going to define the function f, by

Felt) = f(x, 1) == f(t+x)f (1),

for every t € R, where the function f, as usual, is defined by

]_f(x) =f(x), xeR

In the next result we check that, in fact, the mean value of the function f; and the

function g,, with z € R*, defined by

1 (*~
= —J- fi(t)dt, xeR
2 Jo
Lemma 3.2.6. Let € > 0 and let f be a u.a.p. function. Then there exists I > 0 such that for

'Mf__J‘f ) dx

Proof. Given € > 0, taking into account equality (3.7), there exists I > 0 such that

are u.a.p. functions.

allz>0,

21,
<e+ —supr
Z xeR

_éf()zf( dx+)\*(e+£sup|f )

xeR

where 1* € C satisfies |[1*| < 1 and z € R*. Therefore, organizing the previous equality and

applying the absolute value, we have

‘Mf——J f(x)dx|=

as we wanted to prove. O

Py < e+ Zeuplf(v)

xeR

€+ —lsuplf (x)]

xeR

Theorem 3.2.7 ([4, Chapter 1, Section 3, Theorem 3]). If f is a u.a.p. function, then for
every z > 0, the functions f, and f, , defined by

A =M, 7 fosl f Ft)

are u.a.p. functions. Moreover, the function f, , tends to the function f; uniformly in R when

Z — +00.

Proof. Since f is a u.a.p. function, applying Theorem 2.3.1 and 2.3.6 it follows that for
each x e R, ]T(X, t) is also a uniformly almost periodic function of variable t. Let €; > 0.
Due to the fact that for each x € R the function f; is uniformly almost periodic, there exists
7;1 > 0 such that every interval with lengthAl;l > 0 intersects E 7 and using Theorem 2.2.1
we have that f is bounded, therefore we have

B:=sup |f(x, 1) < co.
teR
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Using equation (3.7) and replacing e, f,A and I, with ey, f, B and 7;1 respectively, we can

leB
M, 7 fo, t)ydt+ A eg + —

In these conditions we can see that B < A%, Let €, := 2Ae and let T € E¢ . Then we have

write

et +7) = fuB) = [f (E+x+ ) f (4 7) = f(£+x)f (¢)
=|f(t+x+T)f(t+T) = f(t+x)f(t+T)+ f(E+X)f(t+7) = F(t+x)f (1)l
<|f(t+x+0)f(t+T) = f(t+x)f(t+ D) +|f(t+x)f(t+T)— f(£+x)f(2)]
[(F(t+x+7) = F(E+2))f(E+ D] +I(F(E+T) = F(£)f (£ +x)]

<eA+eA=2eA=¢€.

Therefore the set E.r C E_ 7 and, consequently, any interval with length I, intersects

E, 7 Hence we can consider, without any loss of generality, that /. :7;1' Consequently
there exists A** € C such that |A**| < 1, and satisfies

L ("7 - 2A%]
Mt,]‘F(X,t):Z\J; f(x,t) dt+/\ (2A€+ 6),

that is,

2A2
fi(x) = fo(x +A**(2Ae lf).

Let 6 > 0. Since we can take € to be as small as we please, we can consider that

)
2Ae | < =
241" < 3

Taking into account that

2A21
lim =—<— =,
Z—00 zZ

there exists p € N such that if z> p, then

| 2A2I )\

o
< —.
z 2

Consequently if z > p, we shall have for every x € R,
2A?
A (2Ae = le )

therefore f, , tends to f; uniformly in R when z — co.

2420 5 5
T<E+§_6’

f22(x) - ix)| = <[2AeA™|+

Let T € E¢ ;. In these circumstances, analysing the definition of the function f, it
follows that

oalis 1)~ focl) =| 7 | [Flxs ) =Fls o at|
< §L| (b4 x+0)- fle+x)]F(0) | dt



3.3. FOURIER SERIES OF U.A.P. FUNCTIONS

1 z
S—J €A dt = Ae,
Z Jo

that is, Ec ; C Exc,f,, and consequently f, . is a u.a.p. function for each z > 0. Due to
the fact that f, , tends uniformly to f;, applying Theorem 2.4.2 to the sequence (f,),en
defined by

ftsr= | Fonnde

we get that f; is also a u.a.p. function as we wanted to prove. O]

3.3 Fourier Series of u.a.p. Functions

We are going to define the function e, by

er(x):=e, xeR
for each A € R. In these conditions we can assure that for any A € R, e, is a periodic
function, therefore it is a u.a.p. function, and we have that
;Lrgloéjg e dx, ifA=z0 0, ifA=0
Me)L = = (39)
.1 (% . _ . _
}Lrgzjoldx, ifA=0 1, if A=0.

Let f be a u.a.p. function and A € R. Since e_) is a u.a.p. function, applying Theorem
2.3.6, we get that fe_) is also a uniformly almost periodic function. Consequently, by

Theorem 3.2.4, it follows that My, | exists. In this work we will denote for every A € R,
af(/\) = Mfe_,\-

Theorem 3.3.1 ([4, Chapter 1, Section 3, Theorem 4]). Let f be a uniformly almost periodic
function and N € N. Consider {by,...,by} € C and {Aq,..., AN} € R such that for every i,j €
{1,...,N} le ij, then A # /\] If

N
h(x) := Z buey (x),
n=1

then
N N
Mg pp = Mg - Z lag(A)l* + Z by —as(A,).
n=1 n=1

Proof. Firstly let us observe that for every x € R,
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N N N
Y FBae =Y Fbue 4 YN b,
n=1

n=1 n=1m=1

Z

Using the previous statement, we can assure that

N N N
M|f_h|z = M|f|z — Z Eane,A” - Z b”M?e,\” + Z Z eAn—Am’
n=1 n=1

n=1m=
and observing equation (3.9), it follows that M, =1 and M, = 0 for any ¢ = 0, conse-
quently

Hence we can conclude that

N N N
Mg =Mige = ) Buap(A)= ) buag(hy)+ ) byb,
n=1 n=1 n=1
N N _
:M|f|2_ af(/\n)af(/\n)"" (bn_af(/\n))(bn_af(/\n))
n=1 n=1

N N
= Mjsp - Z lag(A, Z b, —ag (A2,
n=1
O

The following result shows us that, given a u.a.p. function f, the set of values A € R

for which af(A) # 0 is at most a countable set.

Theorem 3.3.2 ([4, Chapter 1, Section 3, Theorem 5]). If f is a u.a.p. function, then there

exists at most a countable set of values of A € R for which a;(A) # 0.

Proof. Applying Theorem 3.3.1, we can see that h(x Z b,e'M* gives us the best
approximation in mean to f. If we consider b, = ag(A,) for every n € {1,...N}, then we
have
N N
M|f—h|2 = M|f|2 - Z |af(/\n)|2 =4 M|f|2 = M|f—h|2 + Z |af(/\n)|2. (3.10)
n=1 n=1

Since Mjsp, Mj_yp and Z|af(/\n)|2 have non-negative values, it follows, by equation

n=1
(3.10), that
N

Y lap(An)P < Mygp. (3.11)

n=1
Due to the fact that the previous inequality is true for any N € N of real numbers A4,..., Ay,
we get that for every € > 0 there corresponds at most a finite number of values of A for
which |af(A)[ > €. If ar(A) # 0, then there exists m € N such that

1
< |af(/\)| <—,

1
|€lf(/\)|>1 \Y —— -
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that is, each of these inequalities is satisfied by a finite number of values of A. Conse-
quently there exists at most a countable set of values of A that verify ag(1) = 0 as we

wanted to prove. O

Taking into account the previous theorem, we can assure that there exists B C N such
that [{A, : af(A,) # 0 An € N}| = |B|. In these conditions we say that A1, A,,... are the

Fourier exponents and a¢(A1),af(A3),... are the Fourier coefficients of the function f. The

Z af(An)ei’\"x

n=1

series

is called the Fourier series of the function f, and we write it as being

fE)~ ) ap(Ay)et.

n=1

Since inequality (3.11) is true for any N € N, we can assure that

Y lap(a)l < Mygpe.
n=1

The above inequality is called the Bessel inequality for uniformly almost periodic func-

tions.

Example 3.3.3. Let f be a purely periodic function with period 27. In these conditions

we know that its Fourier series is defined by
flx)~ Aye™
where the constants A, for every n € Z, satisfy the Parseval Identity [2, Theorem 8.63]

1 271 Zin ad 2 1 m )
vim g [ s Y P o i ax

n=—oo

However, since f is a periodic function, it follows that f is a u.a.p. function and taking
into account that f and e_, are periodic functions with period 27, we have that for each

nez

1 ? .

M, =lim - x)e "™ dx

e =Jim = [ f)
1

m27m

- i —inx d
mlj}go m27m 0 f(x)e X

m (" ;
=1 —inx g
ml—Igo m2m Jo f(x)e x

1 271

=5 . (x)e™ "™ dx
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and also

1 v
Mzzhm—Jﬁ(@Pm
e =, f

1 m2Tt 5
:Wlll_fgom—w . |f (x)I” dx
21
_ 1 m 2
= lim ——— . |f (%) dx
1 27 5
=7 ), VWP ax

The statements made in this example assure that the coefficients A, are also Fourier
coefficients of f in the new sense, and there cannot be any other Fourier coefficients in
the new definition. Hence if we consider a periodic function, the definition of the Fourier

series we were used to coincides with the new one.

Theorem 3.3.4 ([4, Chapter 1, Section 3, Theorem 8]). If f is a u.a.p. function represented

by the sum of a uniformly convergent trigonometric series f(x) = Zunei’\"x, then the Fourier
n=1
series of f coincides with this series.
(o)
Proof. Firstly let us observe that for every A € R, the series Z a,e' V¥ is a uniformly

n=1
o0

convergent series because Zune
n=1
In these conditions it follows that

4% js a uniformly convergent series by our hypothesis.

My, = lim — e i > a,eM* dx = > a,M,, ..
- y—00 y 0 n-
n=1 n=1

Taking into account equation (3.9), we can see that

_fo, ifa=a,
1, if A=A,

Consequently if there exists n € N such that A = A,, then My, =a,, otherwise we have

My, = 0. Therefore for every n € N, we conclude that ag(A,) = Mpe , =ay. O

As our intuition would tell us, any non-negative u.a.p. real function with mean value

equal to 0 must be the null function.

Theorem 3.3.5 ([4, Chapter 1, Section 3, Theorem 10]). If f is a u.a.p. real function, f(x) >0
for every x € R and My = 0, then f(x) =0 for any x € R.

Proof. Let us suppose, by contradiction, that there exists x; € R such that
f(xg)=m>0.
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Since f is a u.a.p. function, it follows that f is continuous and therefore there exists 6 > 0
such that for every x €]xg —0,xy + 9|,

f(x)>§-m. (3.12)

Since %m > 0 and f is a u.a.p. function, there is l%m > 0 such that any interval with
length l%m intersects Ej, ¢. Consider, without loss of generality, that ng > 20. In these
conditions for any interval I with length l%m, there exists T € Eipp such that xo + T €]
and thus I contains at least one of the intervals |xg + T — 9,x¢ + T[ or |xg + T, x0 + T + 9|,

because I has length equal to l%m > 26. Taking into account that

sup f (x+) f(9] < 37 = sup |f (x— 1) = (0] < 3m

x€R xeR

we can guarantee, using inequality (3.12), that for every x €]xg+ 7 —0,x9 + 7[ and x €
Jxo+ T, x0+T+9[,

|f(x)—f(x—”c)|£%m:—%msf(x)—f(x—f)g%m:f(x)zf(x—r)—%m>%m.

Consequently in each interval of length [ L there exists a sub-interval of length 6, such
that f verifies f(x) > 2m, for each x in that sub-interval. Taking into account the above

inequality and the fact that f is a non negative function, we have for every A e R,

Atly 5
J ey dx = 19,
1 3
Therefore we get
nly
Sm mo
=M;s = li ’ >—>0,
0 ¥ nl—g}onlémfo f(x)dx> 3 >0
which is a contradiction, thus f(x) = 0 for any x € R as we wanted. O

Let (fx)ren be a sequence of u.a.p. functions. We know that the set of the Fourier
exponents of each function f; is a countable set for every k € N. Let us denote all of those
exponents by {)\;k) : n € N}. In these conditions the Fourier series of each function f; can
be represented by

00

fil)~ Y ag et

n=1
where {afk(/\;k)) : n € N} represents the Fourier coefficients of the function f; for any k € N.
It is important to observe that a countable union of countable sets is a countable set. Thus
if we add at most a countable number of terms in each Fourier series of each function f;
for which a A (/\Lk)) = 0, then we can consider, without loss of generality, that every function
fx has the same Fourier exponents, that is, if i,j € N and i # j, then we can represent the

Fourier series of f; and f; by

fi(x) ~ Z“fi(/\n)ei/\"x’ fj(x) N Z“f,-(/\n)ei/\”x-

n=1 n=1

33



CHAPTER 3. RELATIONS BETWEEN NORMAL, U.A.P. AND TRIGONOMETRIC
POLYNOMIAL FUNCTIONS

Theorem 3.3.6 ([4, Chapter 1, Section 3, Theorem 11]). Let (fi)ren @ sequence of u.a.p.
functions such that for every k e N,

where ag(A,) = lim ag (A,), for any n e N

k—o0

Proof. Firstly let us observe that, by definition, as(A,) = Mg, and az (A,) = M., for

every 1,k € N. Since (fi)ren converges uniformly to f, it follows that

lim sup |fi(x)— f(x)] = 0.

= xeR

In these conditions we can assure that for every A € R,

lim — j [ fi(x e dy

o0 |y y

hm Mg —Myge A| = hm

k—o0

Slim(lim— fi(x) = f( )|dx)

k—oo \y—00 v Jo

< lim (lim lfy sup |fr(x) — f(x)| dx)
0

k—oo\y—oo y xeR

< Jim (sup ) —f(x)l) ~0

0\ xeR

Therefore lim ag, (A,) = af(A,) for any n € N, and we conclude that

k—o0

fE)~ ) ap(Aget.
n=1

3.4 Uniqueness Theorem for Fourier Series

If f is a u.a.p. function, then we shall denote

_ lf Flx)e ™ dx,
zJo

for every A € R and z > 0. In the next result we will see that the function 4)f()\,z) tends to

the null function uniformly in z € [1, +oo[ when |A| — co.

Lemma 3.4.1 ([4, Chapter 1, Section 4, Lemma 2]). If f is a u.a.p. function, then ¢ (A, z)

tends to 0 uniformly in z € [1,+oc0[ when |A| — oo.

34
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Proof. Let A e R\ {0} and z > 1. In these conditions it follows that

1(* —idx 1 (7 —idx
Pr(Xz)+dr(A,2) =7 f(x)e dx + p f(x)e dx
JOo JO
rz . Ttz . .
:l f(x)e_Z/\x dx+l * f(y_z)e_l/\(y_j) dy
Z Jo J% A
1 (* —iAx 1 i+ ) _iA
SR A
zuof(x)e x 2 Js flx 1)e X
rz r0
:é Fx)e™ ™ dx % f(x— %)e_l’\x dx
JO JT
1 (* —iAx 1 itz —iAx
—;Lf(x— )e dx—;J; f(x /\)e dx

Consequently we have

dr(Az) = lej(f(x) f(x_i) —’Axdx _J —z/\xdx

1 (it? T\ _
—2— f(x—x)e_”\x dX:III+12+I3.
ZJ;
Let

A=sup|f(x), w(r)=sup|f(x+1)-f(x).
xeR xeR

We can see that
AT AT

1
I <= L <——r70y7H |L|<——,
1| “’(w) Ll< 5 als 5
therefore

I (m\ Arn 1 (m\ Am
B2 =1+ Lo+ I <IN+ 1l + 15 < S 2 )+ ()

<-—w|= |+
AT zlAl T 2\ Al
Hence we can conclude that
1 T ATt
lim |[pr(A,z)| < lim (—w(—)+—):0,
A sl i e\ i
that is, (A, z) tends to 0 uniformly in z € [1, +oo[ when |A| — co. O]

The following three preparatory results will help us to establish Theorem 3.4.6.

Lemma 3.4.2 ([4, Chapter 1, Section 4, Lemma 3]). Let f be a u.a.p. function and € > 0. If
My = 0, then there exist 51,0, > 0 such that

%LZf(x)e_i"x dx

for every z> 0, and for any A €] -9y, 04|

<€
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Proof. Leta€ R and € > 0. Applying Lemma 3.2.2, we have My = Mt ¢ and since My = 0,
it follows that Mt ; = 0, consequently there exists 6, > 0 such that

21
lj f(x+a)dx| <
Z1 Jo

for every z; > 22 In these conditions it is not hard to see that any z, > 9, can be written

g (3.13)

as z, = nzy, where neNand z; € ]7, 52[. Let us consider

A =sup |f(x)
xeR

Due to the fact that ¢7%* = 1, there exists ; > 0 such that

e — 1] < % (3.14)

for every A €] —01,0;[ and for any x € [0, 0,]. Due to the fact that z, = nz;, we get
" 1 =L ke .
feax=—= Y [ e ay
J‘ Z ZO‘ kZl
-1

1 . 21 .
=— ) itk j flx+kzy)e " dx.
k=0 0

nz;

Using both inequalities (3.13) and (3.14) we have that for every k € {0,...,n -1},

1 o —iAx
Z . f(x+kz)e dx| =

Z1 .
Zlf flx+kz) (e =1+1)dx
1

; 1 =
Z1J fx+kzy)( —1)dx+ZJ f(x+kzy)dx
0
< Adx+ +kzy)d
2A21J; X J f(x+kzy)dx
€ €
<-+-=c¢
2 2
Since
1 2 n—1 L
—f flx)e ™ dx = — eIk fx+kzy)e ™ dx,
22 Jo nzy 0
it follows that
1 (= A 1 e (P A
— x)e " dx| = |— e A x+kzy)e " dx
= e ) e [ ke
k=0
1 n—1 Z
< — e iAka fx+kzy)e ™ dx
nz 0
k=0
-1
1< |1 (™
=— — | flx+kz)e ™ dx
n 21 Jo
k=0
1= en
< - €e=—=¢€
" k=0
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1 (= :
—J fx)e ™ dx
22 Jo

for any z, > 0, and for every A €] -1, 01[ as we wanted to prove. O

Consequently

<e

Corollary 3.4.3 ([4, Chapter 1, Section 4, Lemma 4]). Let f be a u.a.p. function, € >0 and
peR. If My, =0, then there exist 5(1#),6(2”) > 0 such that

%J; fx)e ™ dx

<€

(1)

for every z > 6(2’4) and forany A €lp—0o{", u+ 6(1F)[.

Proof. We can assure that fe, is a u.a.p. function and consequently, applying Lemma
3.4.2, there exist 61,0, > 0 such that

1 (% . .
ZJ f(x)ezyxefz/\x dx
0

1 (? .
;J Fx)e ™A1 dx| < e
0

for every z > 9, and for any (A — u) €] — 91,01/, that is, for each A €]y — 01, p + 1] as we

wanted to prove. O

Lemma 3.4.4 ([4, Chapter 1, Section 4, Lemma 5]). Let € > 0 and f be a u.a.p. function that
verifies ag(A) = 0 for every A € R. Then there exists zo > 0, such that

%J;Zf(x)e_i’\x dx

<€

for every z> zy and for each A € R.

Proof. Let € > 0. Applying Lemma 3.4.1, we can assure that there exists Ay > 0, such that

éfozf(x)e_w‘ dx

for every z > 1 and for any A that satisfies [A| > A(. Given u € [-1g, A¢] and using Corollary
3.4.3, it follows that there exist z,,0, > 0, such that

1(* ;

—J F(x)e ™% dy
zJo

for every z >z, and for any A €]y —6,, p+9,[. In these conditions it is obvious that

L) Ie-dpn+s,l

HE[=A0, 0]

<€

<€

is an open cover of the interval [-1g, Ao], therefore taking into account the Heine-Borel
Theorem we get that [-1(, Ag] is compact and thus there exist yy,...,p, € R, where n €N,
such that

n

(A0 Aol € () [tk = S pic+ 83
k=1
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In these circumstances we can assure that

1 (? .

—f fx)e ™ dx
z Jo

for any A €]uy —6,,, px +6,, [ and for each k € {1,...,n}. Consequently,

<€

for every z>z,,

if we consider zy > max{l,z , then we can conclude that for every z > z, for any

Ml,...,zyﬂ}
A €)p =6y, p + 6, [, for each k € {1,...,n} and for every A that verifies [A| > Ao,

%J:f(x)e_i/\x dx

That is, the inequality stated previously is indeed true for any z > z; and for every A e R

<E€.

as we wanted to prove. O

Lemma 3.4.5. Let z> 0 and let f, , : R — C be a continuous periodic function of period z.

Suppose that (Ar(z))rez, is the sequence of its Fourier coefficients. Then the functions

fa,(x) = %J; fio(x+t)f,(t)dt, xeR,

1 (7 —
f3,2(x) 1= ;J; o (x+1t)f,,(t)dt, x€R,
are continuous periodic functions of period z, and (|Ax(2)|?)kez and (|Ax(z)[*)kez, are the se-

quences of their Fourier coefficients, respectively.

Proof. Since fi , is a continuous and periodic function, applying Weierstrass theorem, it
follows that
A= sup |fi -(x)| < 0.

x€[0,2]
Taking into account Lemma 2.1.5 and Theorem 2.2.2, we have that the function f; , is
uniformly continuous on R.
Let € > 0. Then there exists 6 > 0 such that for each x,9,t € R, the inequality [x —y| < 0
implies that |f; ,(x +t) - f; .(v + t)| < €. For such x,y, we have

et = syl <2 [ Ifren-fly+nldr <e,
0

that is, f,, is continuous on R. The periodicity of f,, follows immediately from the
periodicity of f; ,. Repeating the same argument with f, , in place of f; ;,, we see that f;,
is a continuous periodic function of period z.

Since f; , is a periodic function, applying Fubini’s Theorem [2, Theorem 5.32], it
follows that

]. z —2mikx ]. z 1 zZ —2mikx
;J(; f2,z(x)e : dx= ;J(; (;J; fl(X;t) dt)e = dx
z z - —2mikx
LR Ao R e ax
z2Jo\Z2Jo
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1 (*(1 (* — | 2wkt
= — - fl(x+t)f1(t)e z dt dx
ZJo \Z Jo

1 (*(— . zmike [? _omik(x+t)

== | |ABe™= | filx+t)e = dx|dt
22 Jo Jo
1 (* (— ikt [(FTF —kay

== 1(t)e = fiy dt
Z2 Jo Jt
1 ("% 2mikt (? kax

== (1(t)€ z fi(x)e dx| dt
z=Jo Jo

1 (% ankr —kax
2, fi(t) )( f filx dx)
1 (? mkt = mkx

— | hlb)e = )( j filx = dx)
ZJO

= Ar(2)A(2) = |Ax(2)%,

that is,

1 z —2mikx
[ e dx=lariar? (3.15)
0

for every k € Z. In these conditions we can assure that the Fourier series of f, , is

= 2mikx
forx)~ ) lAx@IPe ™,

k=—00

and repeating the same reasoning for the function f; ,, we guarantee that its Fourier series

is defined by
2mkx
f32(x) Z [Ak(2)|*e

as we wanted to prove. O]

Now we have everything that we need in order to prove that the mean value of the
square of the absolute value of a u.a.p. function is always equal to 0, supposing that each

Fourier coefficient of that function is 0.

Theorem 3.4.6 ([4, Chapter 1, Section 4, Lemma 6]). If f is a u.a.p. function and as(A) =0
for every A € R, then Mz = 0

Proof. Let €,z> 0 and let f; , be a periodic function with period z, such that f; ,(x) = f(x)
for each x € [0, z[. Applying Lemma 3.4.4, we can assure that there exists z; > 0 such that
for each z >z and for every k € Z,

1 z —2mkxi 1 z —2mkxi
A2l =]~ | fzlx)e= dxj=|-| flx)e”= dx
ZJo ZJo

Taking into account the Parseval Identity [2, Theorem 8.63], it follows that

OO|A( lfi(x)>dx =~ | |f(x) dx,
k;ok J-fl X jf x
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which implies that

Z |Ar(2)? < —J A% dx = A2,
k=—c0 ZJo

where
A=sup [ ()
xeR
Consequently, we get that
Z |Ap(2)[* < €2 Z |A(z)]? < €2A2. (3.16)
k=—o00 k=—o00

Let us recall that, given a function / : R — C, we define the function h by
h(x,t):= h(t+x)h(t), x,teR.
Consider the functions
1 (?~ 1 (*~
Po)i= ;| awndt, f0= [ Faturdr
z2Jo z2Jo

Applying Lemma 3.4.5, we conclude that f, , and f; , are continuous z-periodic functions
and (|A(z)]*)kez and (JAg(2)|*)kez are the sequence of their Fourier coefficients, respec-

tively. Due to the fact that f; , is a continuous function and using inequality (3.16), we

have that
> 2mikx
Y Azl
k=—c0

is a uniformly convergent series. Hence applying the corollary of Fejér’s Theorem[12, p.

19], the sum of the previous series coincides with the function f; ,, that is,

2mikx

f3,2(x) = Z |Ap(z)[*e™=, xeR
k=—c0

In these circumstances we have that

(o)

fa0)= ) A2
k=—00
Taking into account inequality (3.16) and the fact that the inequality |Ax(z)| < € holds if
z > zg, we get that
lim f3,z(0) =0,

Z—>00
hence

z
lim 3f0 )P dx = lim £3,(0) = 0.
Since f is a u.a.p. function, it follows that for every € > 0, the set E, r is relatively dense
and thus we can consider an increasing sequence (z,),cy of positive numbers such that
zy €E1; for any n e N, and

lim z, = +co.
n—00
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Consequently, we have

lim lJ If2,2, (x W2 dx=0 (3.17)

n—-oo ZTl

Taking into account that z, € E1 (, we can see that for each x,t € [0, z,],

1

flx+t—zy) = flx+ )< (3.18)

Given n € N, put z = z,. Analysing the definition of the function f, ;, due to the fact that

f1,z is a periodic function and z, € E1 £, We can assure that for every x € [0, z,,] we have

1 Zy ~ 1 Zy—X
f2,zn(x):_f fl,z(xlt) dt:_( flzxr dt+j flzxr dt)
Zy 0 Zy 0
Zn—

:i( [ Ez (x,t) dt+ K E,Z(x—zn,t)dt)

Zp JO Z,—x

:i( Pzn_xf(x,t)dt+ K fx Z,, t) t)
Zp JO Z,—X

:zi( Pzn]?(x,t)dt— K f(x,t)dt+J‘Z" j?(x—zn,t)dt)
n\Jo Zp—X Zy,—X

:Zl( N”f(x,t)dwfn [f(x+t—zn)—f(x+t)]7(t)dt). (3.19)
n\J0 Z,—X

For each x € [0,z,], using inequality (3.18), one has

IJ‘Z“A Ax A
<— —dt = <—.
z n

Zn Jzy—x 1 Z N

= [ - fenlf dr

Zp

Consequently, there exists A, , € C such that |1, ;| < 1 and verifies

L [f (x+t—z,)— f(x+1)]f(t) gy AnxA

Zn Jz,-x n

Taking into account the previous equality and equation (3.19), it follows that

A A
p

Zijo Flotydt=fo, (x)- (3.20)

Let g(x):= Mt,f(x,t)

g is a u.a.p. function and

for each x e R. Applying Theorem 3.2.7, we can see that the function

1 (%~
:_f f(x,t)dt, z>0,xeR
zJo

tends to g uniformly in R when z — oo, hence we get that

1 (>~
lim sup —J- f(x,t)dt—g(x)|=lime, =0,
n—oo0 xeR n 0 n—o00
where
,i=sup|— f f x,t)dt —g(x neN. (3.21)
xeR
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It follows from equations (3.20) and (3.21) that for each x € [0, z,,],

lg(¥) < €, +

ZLL o) dt’ <ey+lfo () + %.

Moreover, we can see, by definition of the function f, ,, that

1 Zn _
foz, (¥ < — J fiz,(x+0)f 1, (D) dt < A%
0

n

Hence, for each x € [0, z,,], one has

2

A A
8GR < 1fsz, (0P + 242 (e + 2 )+ (e + )
Therefore
1 [ 1 (% A A\?
~ | e dx < —j foz, () dx+ 2A2(en + —)+ (en + —) .
Zn 0 Zn 0 n n

Consequently, using the previous inequality and equation (3.17), we get that

e 2
lim — |g(x)|“ dx = 0.
0

n—oo z,

Fix > 0. By Lemma 3.2.6, there exists [, > 0 such that for all n € N,

(™ 2 2Ly
0<Mgp<—| g dx+y+—=A"
Zn Jo Zn
Since z,, — 400 as n — co, passing to the limit when n — +co, we get that
0< M|g|2 <vy.

Passing to the limit as  — 0, we finally obtain My = 0. Applying Theorem 3.3.5, we get
that |g(x)|> = 0 for every x € R, and we conclude that

g(O) = M|f|2 =0
as we wanted to prove. Ul

Fortunately, as in classical Fourier theory (see, e.g., [12, Chapter 1, Theorem 2.7]), we
can also guarantee that u.a.p. functions with the same Fourier series must be equal to

each other.

Theorem 3.4.7 ([4, Chapter 1, Section 4, Theorem 7]). If f and g are u.a.p. functions with

the same Fourier series, then f = g.

Proof. Let h = f — g. Since h is a u.a.p. function and f and g have the same Fourier series,
it follows that the function h satisfies a;(A) = 0 for any A € R. Applying Theorem 3.4.6
we can assure that My,2 = 0, consequently using Theorem 3.3.5 we have that h(x) = 0 for
every x € R, and we conclude that f = g. O]
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We finish this section by establishing the Parseval Identity for u.a.p. functions.

Theorem 3.4.8 ([4, Chapter 1, Section 4, Theorem 8]). Let f be a u.a.p. function and

(o8]

consider Zaf(/\n)e”\”x its Fourier series. Then

n=1
Migp = ) lap(d)
n=1

where the above equation is called the Parseval Identity for u.a.p. functions.

Proof. Let f be a u.a.p. function and Zaf(/\n)ei’\"x its Fourier Series. For each x € R,

n=1
consider the function g(x) = M, Tty Taking into account the proof of Theorem 3.4.6 and

using a similar reasoning for the functlon g that we used on equation (3.15), we get that
Mge_An = |af(/\n)|2

for each n € N, and thus the Fourier series of g is

me |2 1)\x

Applying Theorem 3.3.1, we can assure that

(o)

Z lag(AnI* < Migp,

n=1
that is, the series Z |af(/\n)|2 is convergent, consequently the series

[ee]

P(x):= ) lap(A,)Pe

n=1
is absolutely convergent and also uniformly convergent. Since ¢ is a uniformly convergent
series, using Theorem 2.3.4 we have that ¢ is a u.a.p. function and by Theorem 3.3.4,
the Fourier series of ¢ coincides with the series for which ¢ is represented. Hence the

functions g and ¢ have the same Fourier series, consequently applying Theorem 3.4.7 we

x) = Z lag(Ay) e,

In these conditions we can see that g(0 Z las(A,) 2 and due to the fact that g(x) =

n=1

M, gy it follows that g(0) = M7 and we conclude that

Z'”f WP = Mygp

as we wanted to prove. O]

get that g = ¢, that is,
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3.5 Approximation of u.a.p. Functions by Trigonometric
Polynomials

We start this section by defining two new classes of functions, the class of finite sums of

trigonometric polynomial functions and its closure in L*(R).

Definition 3.5.1. Let APP(R) denote the vector space over C of all finite sums of trigono-
metric polynomial functions, that is, the set of all finite sums of the form

n

chei/\kx’
k=1
where ¢, € C and Ay € R for every k € {1,...,n}. We define AP(R) as the smallest closed
subset of L*°(R) that contains APP(R), that is,
AP(R) = clospr)(APP(R)), (3.22)
where clos;«r)(APP(R)) denotes the closure of APP(R) in L*(RR).

The following figures show us the behaviour of three trigonometric polynomial func-

tions.

Figure 3.1: f(x) = 10e™ + (3 + 5i)e?™* — 3ie™* 4+ 2¢°*, x€[-6,6], x€[-300,300].

Im(z)
Im(z)

Tix

Figure 3.2: f(x) = 4e77* + 10e™* + 6ie’ 3, x€[-10,10], x € [-400,400].

Im(z)

Re(z) Re(z)
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Figure 3.3: f(x) = e* + 2¢™* +ie?*, x€[-20,20], x€[-200,200].

3k _ ——

——

Imiz)

In the following result we check that AP(R) is, indeed, contained in the set of u.a.p.

functions.

Theorem 3.5.2. As we defined before, let U(R) be the set of all uniformly almost periodic
functions and let AP(R) be the closure of APP(R) in L*°(R). Then AP(R) C U(R).

Proof. Let us consider a function ¢ € AP(R). Since AP(R) = clos;«gr)(APP(R)), we can

assure that there exists a sequence (p,,),en of terms in APP(R) such that
T}LH.}OHGO — Pulle ) = 0.

Firstly let us note that for every n € N, p,, is a uniformly almost periodic function because
it is a sum of functions of the form c- ¢!**, with ¢ € C and ) € R, and we know that those
monomials are purely periodic functions and thus u.a.p. functions. Observing that the
sequence (p,),en converges uniformly to ¢, we just need to apply the Theorem 2.4.2 and

we can conclude that ¢ is indeed uniformly almost periodic, that is, AP(R) CU(R). O

The next result show us that the opposite is also true, that is, the set of u.a.p. functions
is contained in AP(R).

Theorem 3.5.3 ([4, Chapter 1, Section 5, Theorem 2]). Let f be a u.a.p. function, € >0 and

[ee)
‘/\n
fE)~ ) ap(Ay)et,
n=1
In these conditions there exists a trigonometric polynomial function P, whose exponents are

Fourier exponents of f and

sup |f (x) - P(x)| <e.
xeR

Proof. Given k € N, consider
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for any x € R. Since f; is a u.a.p. function, using equation (3.10) and Theorem 3.4.8, it

follows that ;

Migp = Migp+ ) lag(A,)P,

n=1

which implies that
M=) lag()P.

n=k+1

Let 7 > 0. Using the previous equality and due to the fact that Z |af(/\,l)|2 is a convergent
n=1
series, there is p € N that verifies

M|f;9|2 <.

Taking into account the statement (3.8) of Theorem 3.2.5, we can assure that

%L |fp(x+ ) dx

tends to My p uniformly in s € R when z — oo, consequently there exists zo > 0, such that

1 z
EL |fplx+8)12 dx = Mg p| <7,

for every z > z and for any s € R. Let s € R. Using the inequality stated previously and
the fact that Mg <17, we get

z
%L (x4 s dx <21,

that is, Z
f £, (x +5)* dx < 21z (3.23)
0

Since f is a u.a.p. function, there is ¢ > 0 such that any interval with length ¢ intersects
Eey. Consider z = N(lg +1) > zy, where N €N, and for every k € {0,...,N — 1}, let

Ty € [k(l% + 1),k(l% + 1)+l§] N E%,f’

Using Theorem 2.2.2 we have that f is uniformly continuous, consequently there exists
0 €]0,1[ such that for any x1,x; € R,

=l <6 = If(x) = flx)l < 5.
Let

N-1
B= U ]Tk,Tk-i—é[
k=0

and consider the function

) 1, if xeB
X)=
A8 0, if x€]0,z[\ B.
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Applying Holder’s inequality [2, Theorem 7.9], we have

z 2 z z
’f fp(x+s)xp(x) dx| < J pr(x+s)|2 dxf (xp(x))? dx. (3.24)
0 0 0

Observing the definition of the function xp and the fact thatif 7,7 € {0,...,N—-1}and i # j,
then ]7;, 7; + 0[ N |7, 7j + 6[= 0, we can see that

LzocB(x))z dx =N,

and also

8
= J fo(x+ 1) +5) dx.
0

Taking into account the previous equation and inequalities (3.23) and (3.24), it follows
that

<+4/21zNo,

which implies, using the fact that z= N(lc + 1), that

N-1 .5
ZJ- fp(x+ 1 +5) dx
k=0 20

1 J 2n(le +1)
— folx+ T +5) dx | < | ————.
N6 ; o F o
Ifn<igrm (l +1) then we obtain
1 N-1 ~5 €
— d —. 3.25
NS kZOJ; fo(x+ 1 +5) dx <3 ( )

For k €{0,...,N —1}, let

k S = NéJ Z “f 1/\,1 X+T+S) Né Z I)L SJ‘ af 1/\,, (x+7¢) dx.

In these circumstances we can assure that P is a trigonometric polynomial function
whose exponents belong to the set of Fourier exponents of f and analyzing the definition
of the function f, and Py, we get that

0 8
%L folx+ 1 +5) dx:%ﬁ) f(x+ 71 +s) dx—DPy(s). (3.26)
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Let P(s Z Pi(s). Since inequality (3.25) is satisfied and due to the fact that equation

(3.26) holds we can assure that

1N—l S5 €
WZL f(x+1K+5s) dx—P(s) <3 (3.27)
k=0

Noting that f is uniformly continuous and that

[(x+ 1T +s)— (T +5)| = |x| <O
for every k € {0,...,N — 1} and x €]0, o[, we can see that
f(x+ T +5)— fTg +5)| < g

consequently, we get

o
‘ éj (f(x+1+5)— f(T +5)) dx

J-fx+Tk+s ) dx — f (T +5)
Jlfx+rk+s — f(t) +5)| dx

€

<5L§d 3

[f (T +5) = f(s)l <

due to the fact that 7} € Ee ¢ for each k €{0,...,N -

Taking into account that

“‘(»Im

, it follows that

5 5
’%L fx+t+s)dx—f(s) :’%L f(x+t+s)dx—f(s)+ f(tx+5)— f(Te +5)

+1f (T +5) = f(s)l

B
%L flx+t+s)dx—f(te+5)

<e+e_2e
3 3 3°

Therefore one has

Néz«f f(x+1e+s)dx—f(s)

N-1 5
O(%J; f(x+1+59) dx—f(s))

k:
1N—l 1 Fy
<= — | flx+t+s)dx—f(s)
N £-|5 J,
k=0
1526 26
< — — =
N 3 3
k=0

Hence, using the previous inequality and inequality (3.27), we conclude that

f(s)—P(s)+%Z§ij(x+rk+s dx——ZJ- fx+t+s)d
k=0
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1 N-1 .5
WZJ f(x+1r+s)dx—P(s)
k=00

1 N-1 5§
WZJA f(x+t+s)dx—f(s)
k=00

< +
< 2 +<ze
3 3 7
that is,
sup |f (x) - P(x)| < e
xeR
as we wanted to prove. O

We finish this chapter by observing the most important results that we obtained so

far, that is, any u.a.p. function has three equivalent definitions.

Theorem 3.5.4. Let f : R — K be a function. Then the following statements are equivalent.
1. feUR);
2. f e N(R);
3. f e AP(R).

Proof. Applying Theorems 3.1.4 and 3.1.5, we can assure that f € U(R) if and only if
f € N(R). Taking account Theorems 3.5.2 and 3.5.3, we have f € U(R) if and only if
f € AP(R), consequently, we have the equivalence between the statements as we wanted

to prove. O
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4

FOURIER TRANSFORM ON THE SPACE L2

In this chapter we are going to start by studying the LP(R) spaces with p € [1, +o0]. Fol-
lowing that we will define the Fourier Transform in L!(R), and after analysing some
important properties of it we will be able to extend this definition to the space L%(R).

4.1 LP Spaces and Step Functions

Definition 4.1.1. Let f : R — C be a measurable function and p € [1,+co[. We say that
f € LP(R) if, and only if,

fm P dx < o,

—00

and we define its norm by

fllze () = (-f If (x)IP dx)p .

—00

If p = oo, then we say that f € L*°(R) if, and only if,

esssup |f(x)|:=inf {t > 0: p({x e R: [f(x)| > t}) = 0} < oo,

xeR

and we define its norm as

|f [l (r) := esssup |f(x)].
xeR

In this work, given p € [1, +oo], we will denote [|f||r»(r) by [|f]l,- It is important to observe
that, in these spaces, we consider that two functions are the same if they are identical

almost everywhere.

Definition 4.1.2. Let f : R — C be a function. We say that f is a simple function if and
only if f takes on only finitely many values, that is, if there exist {1,...,1,} CC\ {0} and
measurable sets Ej,..., E, C R such that

f = /\1XE1 +--+ /\HXE,,’

50



4.1. LP SPACES AND STEP FUNCTIONS

where

(x) = 1, if xeE,
B0, ifxeR\E.

is the characteristic function of a set E C R.

Definition 4.1.3. Let f : R — C be a function, {a;,...,a,} € C\ {0} and I;,..., I, intervals
of R, with n € N. We say that f is a step function if, and only if,

f=aixy + - +aux,
where x is the characteristic function of a set E.

Analyzing both of the previous definitions we can see immediately that every step
function is a simple function. For p = 1, the following result is proved in [2, Theorem 3.47].

For 1 < p < o0, the proof is analogous.

Theorem 4.1.4. Let p € [1,+oo[. If f € LP(R), then for every € > O there exists a step function
g € LP(R) such that ||f —g|l, <e.

Proof. Let € > 0, consider without loss of generality, f : R — [0,+co[ and suppose that
f € LP(R), where p > 1. Applying Theorem [2, Theorem 2.89], there exists a sequence of
simple functions (¢,),cn, such that for each x € R and for every k € N, one has

lim ¢, (x) = f(x)

n—-+oo

and also
k()] < |1 () < [f (x)]- (4.1)

Due to the fact that f € LP(R) and (¢,,) is a sequence of functions that satisfies inequal-
ity (4.1), we get that ¢, € LP(R) for every n € N. Taking into account that these simple

functions form a sequence that verifies inequality (4.1), we can assure that for any x € R,

1f (%) = @u()PP < 2P(If (x)P + g (0)P) < 2P*H|f ()P

Moreover, |f|P € L'(R) because f € LP(R). Using the Dominated Convergence Theorem [2,
Theorem 3.31], we get that

+00

. o
Jim | 1) a0l dx =0,

and we conclude that simple functions are dense on LP(R). Consequently given € > 0,
we can assure that there exist measurable subsets Ay,...,A, of R and nonzero complex
numbers ay,...,a, such that u(A;) < o for each k € {1,...,n}, where u(A) denotes the
Lebesgue measure of any set A, and also

Hf - iakXAk

k=1

€
<.
2

p
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Foreachk €{1,...,n}, there is an open subset Gy of R that contains Ay and whose Lebesgue
measure is as close as we want to u(Ay). Each open subset of R, including each Gy, is a
countable union of disjoint open intervals (see, e.g, [1, Theorem 3.11]). Thus for each
k, there exists a set Ej that is a finite union of bounded open intervals contained in Gy
whose Lebesgue measure is as close as we want to y(Gy). Hence for each k, there is a set

E; that is a finite union of bounded intervals such that
p
€
H(ER \ Ag) + p(Ag \ Ex) < p(Gi \ Ag) + p(Gy \ Ey) < (2|ﬂ—k|n) )

that is,

|mm—xam=(f mmuw«ﬂquﬁpzwwMAw+MAMEmﬁ

—00

€
< —/—.

2lag|n
Therefore applying Minkowski’s Theorem [2, Theorem 7.14], we have

n

f—ZakXEk

k=1

n

f- ZﬂkXAk

k=1

n n

ZakXAk - ZﬂkXEk

k=1 k=1

<

+

p p p

€ n
<5+ ) laellxa, ~xgll
k=1

<€,

n
and we conclude that for every € > 0, there exists a step function g = ZakXEk € LP(R)
k=1
such that ||f - g, <e. O

As a consequence of the previous theorem, in the next result we will be able to prove
that, in fact, the space LP(R) N LY(R) is dense in LP(R) for each p,q € [1, +o0[.

Corollary 4.1.5. Let p,q € [1,+0o[. Then the space L1(R) N LP(R) is dense on LP(R).

Proof. Let f € LP(R) and let € > 0. Then, applying the previous theorem, there exists a
step function g € LP(R) such that

I/ =gl <e.

Taking into account that g € LY(R) for each g € [1,+0o[ because g is a step function, we get
that g € L1(R) N LP(R) for every g € [1,+o0[, and we conclude that the space L1(R) N LP(R)

is dense on LP(R) for each g € [1,+0co[ as we wanted to prove. O

We finish this section with two preparatory results that will help us to establish Theo-
rem 4.4.3.

Theorem 4.1.6. Let p € [1,00[ and consider f € LP(R). Then the function
O(t) = [If = Tt fllp
is bounded and uniformly continuous on R.
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Proof. Let f € LP(R). Then there exists M; € R such that

(fm e ax) <
and since oo .
[T ax= [ iges e ax

for every A € R, it follows that the translation function T, f € LP(R) for each A € R. Apply-
ing Minkowski’s Theorem [2, Theorem 7.14|, we have that

L

() = ( (- Fla-P dx)p

+oo » +00 5
s( If(x)l”dx) +(j If(x—t)l”dx)

=( (i r dx)” . (f P dy)” < (M4 M) = M,

—00 —00

for every t € R, that is, ® is a bounded function.

Let a,b € R be such that a < b and consider the function

d) = x[a6) = T-t X001l

for each t € R. Let us suppose that s,t € R with s < t. Then

|¢(t) - ¢(5)| = | ”X[a,b] - T—tX[a,b]“p - ”X[a,b] - T—sX[a,b]”p |
<NT-i x(a,0) = TosX(ap)llp

+0o P
=( |X(a,0)(X = 1) = X[a,p)(x = 5)IP dx)

L
P

b+t
( a+tb+t( ) - X[a+s,b+s](x)|p dx)

P, ifb+s<a+t,

(2(

) ifa+t<b+s,
1
P,

<2r(t—5) (4.2)

p
For €; >0, put 9 := %‘ If 0 <t-s<0q, then it follows from (4.2) that

(1) — p(s)| < 27 (t—5)7 < 2767 <ey,

therefore we conclude that ¢ is uniformly continuous on R.

Now let a; < b; for each i € {1,...,n} with n € N, let {A4,...,A,;} € C, and consider the

function
Z A Xla;,b; ]

iX[a;,b;]

’
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for each t € R. If s < t, then as before one has

n n
lp(t) — @(s)| < T—t[Z/\iX[ai,b,-]]_T—S[Z/\i)([a,-,b,-]]
io1 i1 »
400 | N n p %
= j Z/\i)([ai,bi](x_t)_Z/\i)([ai,bi](x_s) dx]
— li=1 i=1
n
<) INIT Ko, ) = TosX(a )l (4.3)
i=1

Let €, >0 and let

n P ep
5, ::[1 +Z|A,-|] 72

i=1
If 0 <t —5< 6y, then it follows from (4.2) and (4.3) that

n
1 1
p(t) = pls)l < ) [27 (¢ =s5)7
i=1
n 1 1
< [Zl/\il]b’é;
i=1
n n -1 L e
< [Zw][l + Zw] 272 <oy,
i=1 i=1 2p

consequently, ¢ is uniformly continuous on R. Therefore the function
g R-R, t=]lg-Tglly

is uniformly continuous on R, for every step function g.

Let €3 > 0. Applying Theorem 4.1.4, there exists a step function g € LP(R) such that
€3
- < —.
I -glly <
Taking into account inequality (4.3), there is 65 > 0 such that for all x,y € R, one has

€3

o=yl <65 = IT g~ Tygll, < 5

Hence if x,y € R satisfy |x — 9| < 03, then we get that

(D (x) = D@ = [If = Tafllp =1 = Ty £l
<IT_yf = T-xfllp
=Ty f —Tyg+ Ty g —Txg + Txg — T fllp
<ITpf = T8l +I1T-y 8 — Ts8llp + IT-28 = T-xf

=|If _g“p + ||Tfyg_ fog”p +If _g”p
€3 €3 €3
3 3 3
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:€3,

and we can conclude that the function @ is uniformly continuous on R as we wanted to

prove. U

Lemma 4.1.7. Let us suppose that ® : R — R* is a bounded uniformly continuous function

and let p € [1,+o0[. Then the function V := ®P is bounded and uniformly continuous on R.

Proof. Since @ is a bounded function, it follows immediately that W is also a bounded
function. Let x,y € R™. Then, applying the Lagrange theorem (see, e.g., [1, Theorem 5.16]),
there exists & € [min{x, p}, max{x, p}], such that

P — 9P| = p&P~tx - yl.
Consequently, one has
|xP - pP| < p(max{x, p})* ! |x -y, (4.4)

Let € > 0. Since @ is uniformly continuous, there exists 6 > 0 such that for every s,t € R,

one has

Is—t < 6= |D(s) - D(t)] < €

=) (4.5)
p [sup (D(é))

EeR

It is important to observe that sup @ (&) is a finite value because @ is a bounded function.
EeR
Taking into account inequalities (4.4) and (4.5), we see that if |s — t| < 0, then

< p(max{®(s), @(£)})'~[@(s) - (1)]

p-1
< p(sup CD(&)] |D(s) —D(t)| <€,
EeR

that is, W is uniformly continuous on R. O

4.2 Proprieties of the Fourier Transform on L!
We start this section by presenting the definition of the Fourier transform in L!(R).

Definition 4.2.1. Let f € L!(R). We define the Fourier transform of f by the function
]/‘\: R — C, such that

fl):= fo fx)e > dx

for each t e R.

In the following example, we will analyse the behaviour of the Fourier transform of

the characteristic function.
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CHAPTER 4. FOURIER TRANSFORM ON THE SPACE L?

Example 4.2.2. Let a,b € R, let [a,b] C R and consider the characteristic function x[, ).
We can guarantee that x|, ;) € L'(R) and

+00 b
f[a,b](t) = J X[a’b](x)e—thx dx = J e 2Tt g
a
b-a, ift=0,

—2mibt _ ,—2miat

e e :
D ift=0.

Figure 4.1: x[_14)(t), t€][10,20].
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Now we will see that the Fourier transform of a L!(R) function is uniformly continuous
in R.

Theorem 4.2.3 ([2, Theorem 11.49]). If f € LY(R), then ]?is uniformly continuous on R and

Iflleo <IIfll;,  lim F(t)=0.

|t|—)oo

Proof. Let x,y € R. Since le=271¥*| = 1, it follows that

sf £l dx = £l

F(t)l = U:of(x)e-“”x dx

for any t € R, consequently we get that ”ﬂloo <||fll;- Given t,h € R, we have that

lﬂt . h) ~ ﬂt)l _ ‘J+00f(x)e_2ni(t+h)x _ f(x)e—2nitx dx
< fm |f ()] le™2 "~ 1] dx.

Let (h,,),en be a sequence of real numbers such that lim h, = 0 and consider the function

n—+oo
Pu(x) = 1f (0] e —1],

for each x € R and n € N. In these conditions we can assure that ¢, € L!(R) for any n € N

because f € L!(R) and, using the previous equality, we have for every n € Nand x € R,
lim @,(x) =0, |@,(x)|<2[f(x)]
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Consequently applying the Dominated Convergence Theorem [2, Theorem 3.31], it fol-

lows that o
lim |f ()l le™>™ % — 1] dx = 0.
n—+o0o oo
Due to the fact that
+00 )
0 <[F(t+h)-Fit)l < j £ Je2mihe — 1) dx

for every t,h € R, we can assure that

lim [f(t+h,)—f(t) =0,

n—+oo

that is, ]?is a uniformly continuous function. Taking into account Example 4.2.2 if

[a,b] C R, then we can guarantee that

lim Zj,p(f) = 0. (4.6)

[t|—>o0

Taking into account Theorem 4.1.4, there exists a sequence (f,),en of step functions in
L'(R), which imply by the previous arguments that each of the functions ]?is uniformly

continuous, such that
lim ||f - fxlly =0,
k—oc0

hence, due to the fact ||}‘\||Oo <|IfIl; we have
Jim [|f = filloo = 0.

In these conditions we can guarantee that the sequence (ﬁ)keN is a sequence of uniformly
continuous functions that converges uniformly in R to ]? Taking into account equation
(4.6) and the fact that the uniform limit of uniformly continuous functions in R each of

which has limit 0 when |t| — +oc0 also has limit 0 when |t| — +oc0, we can conclude that

lim f(t) =0,

[t|]—>00
as we wanted to prove. O]

In the following theorem, we establish some algebraic properties of the Fourier trans-

form.

Theorem 4.2.4 ([2, Theorem 11.55]). Let f,h € L'(R) and A,t € R. Then the following
proprieties hold.

1. If g(x) = f(x—A) for every x € R, then g(t) = j?(t)e‘zm/\t.
2. If g(x) = e¥™ A f(x) for any x € R, then g(t) = f(t -A).
3. If A #0and g(x) = f(Ax) for each x € R, then g(t) = IITIJ?(%)
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4. If a,p € Cand g(x) = af(x)+ ph(x) for every x € R, then g(t) = f +ﬁh

5. If g(x) = f(x) for any x € R, then G(t) = f(~t).

Proof. If g(x) = f(x—A) for every x € R, then

+00 +0oo
:g\(t) — j g(x)e—ZT(ltx dx = f f(x— /\)e—Zrcztx dx
oo - +oo
— j f(y)e—ZTcit(y+/\) d}l — e—ZRiAtj f(x)e—ZTlitx dx
— ﬁt)€_2niAt.

If g(x) = e*™* f(x) for any x € R, then

+00 ] +00 ) )
’g\(t) — J g(x)e—thx dx = J f(x)e2m/\xe—2mtx dx

—00

- Fx)e 2 =N gy = F( - ),

If A #0and g(x) = f(Ax) for each x € R, then

+00 . +00 .
g(t) = J g(x)e ™ dx = J f(Ax)e ™ dx

1 +oeo —2mity 1 —~/t
:mJ\ f(y)e ™ d}):mf(i)
If a,f € Cand g(x) = af(x) + Bh(x) for every x € R, then
+o00 ] +oo .
gf\(t) = J- g(x)e—2mtx dx = J- f +/5h )) —thx dx

= a JM F(x)e 2 dx + B " h(x)e 2 dx = af () + Bh(t).

If g(x) = f(x) for any x € R, then

qt) = J+oog(x)e—2nitx dx = Jﬂo]_f(x)e—zm'tx dx

J f e27zztx dx = f( )
O

We finish this section by verifying that the integral, in R, of the product between the
Fourier transform of a function and other function, is equal to the integral, in R, of the

product of the former function and the Fourier transform of the latter function.

Theorem 4.2.5 ([2, Theorem 11.59]). If f,g € L}(R), then

f f(t)g(t)dt:f F(0igU) dt
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Proof. Since f,g € L'(R), applying Theorem 4.2.3, it follows that f,’g\e L*(R), therefore
both integrals are well defined. Taking into account the definition of the Fourier Trans-
form, Tonelli’s Theorem [2, Theorem 5.28] and Fubini’s Theorem [2, Theorem 5.32], we

can assure that
too (+oo +00 .
[ A= | et [ pe i dn

(+oo +00 .
= f(x)f g(t)e 2™ dt dx

J =00 —00

_( f(x):g\(x)dx:j_ f(t)glt) dt

J—

4.3 Convolution and Fourier Transform

We start this section by recalling the definition of convolution between two functions.

Definition 4.3.1. Let f,g: R — C be measurable functions. We define the convolution of

f and g by
— [ rgte -

for every t € R for which the integral is defined. Analysing the definition of convolution
we can see that f+g=g=xf.

In the next result, we will prove that the norm, in L?(R), of the convolution between a
LY(R) function and a LP(R) function is always less or equal to the product between their

corresponding norms.

Theorem 4.3.2 ([2, Theorem 11.64]). Let f € L'(R) and g € LP(R), with p € [1,+co]. In these

conditions we can guarantee that f = g is defined for almost every x € R and

1/ gllp <IIf 11 llgll,-

Proof. For every p > 1 and y € R, we have
+00
J If@Ig(x =P dx=f(y IJ glx=p)lP dx=1f(p)l ligly < oo,
and, moreover,

f ) dyf lg(e =) dx = [IFllllglls < o.

—00 —00

Let p = 1. Applying Fubini’s Theorem [2, Theorem 5.32] we can guarantee that

||f*g||1=f+°° (f * )] dx

J-MJ- f(t)g(x—t) dt| dx
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foof x— 1) dt dx
-[ - fm F(0)lg(x - 1)l dx dt
:J-m |j (x—1)| dx dt
[ o[ iwnay ar
[ vonar)( [ swnas)

=flhlgll-

Put p = co. In these conditions we can assure that

Feg)lx |_U £(t) —tdt'

sj F(6) g(x 1)l

<esssup |g(y |J (t) dt
yeR

= lIglleollf 1,

consequently we have
I1f = &lleo <N f 11118 loo-
Let p,q €]1,+oo[ be such that p~! + g7 = 1. Using Holder’s inequality [2, Theorem 7.9] it

follows that
f gl |—U (gt i

sf_ F(0) 18— 1)l dt

= | IO IO lgte-nlde

< (f: £ dt)q (f: F(0)lg(x - 1P dt)”

~lIF1e (f £ lglx— )P dt)”.

—00

Applying the previous inequality and Fubini’s Theorem [2, Theorem 5.32] we have

f (P dx<ifll [ f F(0) g - 0P dt dx

o J-

P ﬁ+oo

= lIf1f (0) f x— 0P dx di
r r\+oo +00

I [ 10 [ lstop ay ae
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_1f (jm £ dt)(fw 5P dy)

P
=1IFI7 1N Ngllh

21
=[If1l; Ngllh
=I£IE 1Igllh

that is, [|f = gll, <IIfll1llgll,, as we wanted to prove. O

Taking into account the definition of the Fourier transform and convolution, in the
following theorem we can see that the Fourier transform of the convolution of two L' (R)

functions, is equal to the product of their corresponding Fourier transforms.

Theorem 4.3.3 ([2, Theorem 11.66]). If f,g € L'(R), then

— —

(f =g)(t) = f(t)g(t),
for each t e R.

Proof. Let t € R. Applying Fubini’s Theorem [2, Theorem 5.32] we can assure that

(Fealt)= | (frgx)e™ ax

[ sty ay ax

J—00
(+oo +00

= f)g(x—y)e I gy dy

R |
— s [ gt ax dy
(+oo . +00 .
— f(y)eZTUtyf g(Z)eiZTatz dz dy
+o00 . +00 .
:(J f(y)e—ZTllty dy)(f g(z)e—ZTcltz dZ)
= f(ngte).

4.4 Plancherel’s Theorem

We present now the definition of the Poisson kernel and the Poisson integral, which will
play an important role in order to establish that the Fourier transform preserves L?(R)

norms.

Definition 4.4.1. Let y > 0. We define the Poisson kernel P, : R —]0, +oo[ by

(x) 1= —2

g n(x? +72)
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In these conditions we have

+00 x +oo
J P, ()] dx = [n_l arctan(;)] =1,

therefore we can assure that P, € L'(R).
Definition 4.4.2. Let f € LP(R) and p > 0, where p € [1,+o0]. We define the Poisson
integral 9, f : R — C by

+0o0
@)1= [ Fn- dx,
for any t € R. Analysing the definition of 9, f we can see that 2, f = f + P,.

In the following theorem, we are going to check that the Poisson integral of a function

in LP(R) gives us a good approximation to that function.

Theorem 4.4.3 ([2, Theorem 11.74]). If p € [1,+oo[ and f € LP(R), then
lim||f -9 =0.
i If =2y fllp

Proof. Let x € R and y > 0. Applying Holder’s inequality [2, Theorem 7.9], using the

definition of the Poisson integral and using the fact that

+0o0
J P,(x)dx =1,

we have that

=@, nei=| [ reonmai-

—00

+00

flx—1)P,(t) dt‘
. U Fx)— flx—1)]B, (1) dt‘
< j £ ()~ Fx— DI, (¢) dt

< U N If(x) = £ (x = )PP, (1) dt)p U " 1B,(t) dt)q

—00 -0

= (J oo|f(x)—f(x—t)|pPy(t) dt)p,

—00

where p~! + 47! = 1 and the second inequality comes from applying Holder’s inequality
[2, Theorem 7.9] to the measure dy = P(t) dt defined by

for any measurable set E C R. Consider the function g: R — [0, +oo[, defined by

g(t) = f ()= fx—DP dx

%
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for each t € R. In these conditions we have

+00

4(0) = J £ (x) — fx)P dx = 0.

—00
Taking into account Theorem 4.1.6 and Lemma 4.1.7, we can guarantee that the function
g is bounded and uniformly continuous on R. Since P, is an even function, due to the fact
that

()~ (@, ()] < (j V- Fle- PR di)

(o)

and using Fubini’s Theorem [2, Theorem 5.32], it follows that

If 2, fIE < f ooj 1) = Flx—0PB,(1) dt dx

—00 -0

_ m%(t)f 1f ) - f - O dx dt

= | Bng(t) dt = (P,g)(0) (4.7)

Let € > 0. Since g is a uniformly continuous function on R, there exists 6 > 0 such that for
every x,x; € R,
X1 —x2[ <0 = [g(x1) - g(x2)l <e.

Consider z € R. Analyzing the definition of the Poisson kernel and using the fact that

+00
J Py(x)dx =1,

—00

we get that

|g(2)—(9°yg)(2)|=‘g(2)—j OB -1

U z—t dt—j:og(t)py(z_t)dt
—J_OO |g(2) — g(t)IPy(z —t) dt
) J{xemz_m} 18(2) —g(1)IPy(z— 1) dt

' LGRJZ_X,Z(S} 12(2)— g(IBy (2~ 1)
< .[{xeR;|z_x|<5} Py(z~t) dt

+2||g||ooj Py(z—t) dt.
{xeR:|z—x|>6}

In these conditions we have

z+0
lim Py(z—t)dt =lim Py(z—t)dt
10 {xeR:|z—x|<5} w0 Jz-s
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o
=lim P, (x) dx
im | (%)
5
:lim[larctan(i)] =1
0| T Vs
and
z—0 +o00
lim P,(z—t)dt =lim P,(z—t)dt+1lim P,(z—t) dt
210 J{xeR:|z—x|>5} Y 10 ) o 7 10 Jos 7
+00 -0
=lim P, (x) dx+1lim P (x) dx
vl Js y(x) 910 J o (%)
|1 <\ .. [1 x\]7°
=lim|—arctan| — +1lim | —arctan|— =0.
plo| T Y/ls 0| T Yoo

Using the previous statements, we have
lim |g(z) - (P,9)(2)| <€,
im [3(2) - (%))
consequently, %, ¢ converges pointwise on R to the function g as y | 0. Hence we get

lim(2,)(0) = g(0),

yi0
and due to the fact that g(0) = 0, we have liin(SJ]&yg)(O) = 0. Taking into account inequality
.0
(5.6), we get
lim||f -2, fllp < lim(%,g)(0) = 0,
imilf 9,1} < 1im(@,2)(0)
therefore
lim||f - =0
i If =2y flly
as we wanted to prove. O

The following example is an immediate consequence of the Fourier transform and its

algebraic properties, and will be used in the proof of Theorems 4.4.5 and 4.5.4.

Example 4.4.4. Let f(x) = e~?™ for every x € R. Given t € R, we have

+00

ﬂt) — J\ e—2n|x|e—2nitx dx

—00

0 ) +00 )
:f ean—2mtx dX+J e—2nx—2mtx dx
0

—00

1 1
+
(=it " 2e(i+i0)
B 1
T (1 +t2)
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Consider now g,(x) = e~ 2k and hy .(x) = 212214l for each x,z € R and y > 0. Apply-
ing the previous equality and Theorem 4.2.4, we get
1 y

gy(t) = = ,
8y yn(l+(§)2) (£ +p2)

consequently using Theorem 4.2.4 it follows that

—_— n_ly
h, () = ————.
(1) y2 +(t—2z)?

The next result shows us that if we apply the Fourier transform to a function four

times, then we go back to the original function.

Theorem 4.4.5 ([2, Theorem 11.76]). Let f € L'(R) be such that fe LY(R). Then

f= | Fine ar = v
for almost every x € R.

Proof. Let x € R,y >0 and gy () := e?mxt=2191tl Taking into account Example 4.4.4 and
applying Theorem 4.2.5, we get

@y flx)= | f(OR(x-t)dt

B (+0oo yT(_l
Jw f(t)(x—t)zw2 “
= f(O3y(1) dt

= | FB)gey( dt

_ ”m]?(t)ezmxt-znm it

J =00

Due to the fact that fe L'(R) and using the Dominated Convergence Theorem [2, Theo-
rem 3.31], we have for every x € R,

—_—
—

lim foof(t)ezmxf—zﬂy“l dt = (f)(~x).

10

Since f € L'(R) and using Theorem 4.4.3, it follows that
li -9 =0.
;ﬁgllf yfll

Taking into account the previous equality, we know from [2, Theorem 7.23] that there
exists a sequence of positive numbers (y,),ecn, such that

lim p, =0, lim (%, £)(x) = f (x),

n—-oo
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for almost every x € R, consequently by the previous statements we get that

n—-oo

f(x) = lim (P, f)(x _l1m (Pyf)(x _11mj Fltye2 =23 gy — (F(=x),

for almost any x € R as we wanted to prove. O
The following example will be used in the proof of Theorem 4.4.7

Example 4.4.6. Let g,(x) = e2I, for each x € R and v > 0. Applying Theorem 4.4.5 and

analysing Example 4.4.4, we have

— ——

B, (x) = (g))(x) = g,(—x) = e 2™,

We finish this section by establishing Plancherel’s Theorem, which states that the

Fourier transform preserves L?(R) norms.

Theorem 4.4.7 ([2, Theorem 11.82]). If f € LY(R) N L3(R), then ||f]l> = lIf]l,-

Proof. Let us suppose that f € LI(R)NL?*(R) and fe L'(R). Consider the function g : R —
C such that g(x) = f(—x). Applying Theorem 4.2.4, we can assure that

for each t € R. Using Theorems 4.2.5 and 4.4.5, it follows that

1= [ e J\ fi-

(+oo —

= (F)(x)g(x) dx = f

J—c0 -
(+0oo _

= ﬂwﬁwdx=w@,

J -0

therefore the theorem is proved when fe L'(R). Consider now an arbitrary function
f e LY (R)NL%(R), y > 0 and x € R. Taking account Theorems 4.3.2 and 4.3.3 and Example
4.4.6, we can guarantee that f P, € LY(R) and

(f * B,)(x) = F(x)(B,)(x) = f(x)e W, (4.8)

Applying Theorem 4.2.3, it follows that fe L*(R) and also

400 o +00 - - +00
j‘|fdwwa:j lﬂ@f”WWMSHNmJ 2l gy < oo,

-0 -0

which implies that f/*?y € L'(R). Applying Theorem 4.3.2 we get that Pyxf=f=+P €
L'(R)N L*(R) and since f * P, € L!(R), using the first case it follows that

If *Byll2 =1If * Bl
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Applying Theorem 4.4.3, we can assure that
lim||f - f*P,|[, =0,
ywllf f=Bll
which implies that
lim{|f = Byll> = lIf]l2-
V10 f yll2 f 2

Taking into account equation (4.8) and the Monotone Convergence Theorem 2, Theorem

that is, ||f]l, = ||]?||2, as we wanted to prove. O

4.5 Fourier Transform on L?

Applying Corollary 4.1.5, we get that the space L'(R) N L?(R) is dense on L*(R). Taking
into account the previous theorem, we can extend by continuity the map f funiquely

to a bounded linear map from L?(R) to L?(R), which we will define as shown below.

Definition 4.5.1. If f € L'(R) N L?(R), then we define the Fourier transform of f by the
bounded operator F : L?(R) — L?(R) such that

Ff = f
If f € L>(R)\ L'(R), then we define the Fourier transform of f by

G Pp— 3 ra
Ffi= m fu

where (f,),en is a sequence in L' (R) N L?(R) such that nlir{l Ilf = full2 =0.

Definition 4.5.2. Let X be a Hilbert space and T : X — X be a linear bounded transfor-

mation. We say that T is a unitary operator if and only if
TT =TT =1,
where T* : X — X is the only operator that satisfies (Tx,y) = (x, T*y) for each x,y € X.

Now we will recall a well-known result of Functional Analysis, which states that in a

Hilbert space, a linear bounded operator is unitary if and only if it is a surjective isometry.

Theorem 4.5.3 ([2, Theorem 10.61]). Let X be a Hilbert space and T : X — X be a linear
bounded operator. Then T is unitary if and only if T is a surjective isometry.

Proof. Suppose that T is unitary. Given x € X we have
||TX||2 =(Tx,Tx) =(x, T"Tx) = (x,x) = ”x”Z,
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consequently we can assure that T is an isometry. Let y € X. In these conditions there
exists x = T*y € X such that
Tx=TT"y =1y,

that is, T is surjective.

Let us suppose now that T is a surjective isometry. Taking into account that T is
an isometry, it follows that T is injective and thus T is a bounded bijective linear map.
Consequently, applying the Bounded Inverse Theorem [2, Theorem 6.83], it follows that
T is an invertible bounded linear operator. For every x € X, we have

Tl = [Ixl|* = (Tx, Tx) = (x,x) = ((T*T = )x, x)
and since T is an isometry, it follows that
(T°T-I)x,x)=0

for each x € X. We know from [2, Theorem 10.46] that ((T*T —I)x,x) = 0 for any x € X
if and only if T*T — I = 0, that is, T*T = I. Taking into account the uniqueness of T71,
T'T=TT ' =Iand T*T =1, we get that T~! = T* and hence T is a unitary operator as

we wanted to prove. O]

With the help of the previous theorem, we finish this chapter by presenting and
proving that the Fourier transform on L?(R) is an isometry. Moreover, we also check
that the Fourier transform on L%(R) is a unitary operator and that, applying the Fourier
transform four times, we get the identity operator on L*(R).

Theorem 4.5.4 ([2, Theorem 11.87]). If F is the Fourier transform on L*>(R), then the follow-
ing properties hold.

1. F is an isometry on L*(R).
2. Fh=1
3. F is a unitary operator on L*(R).

Proof. Let f € L?(R). Since % is obtained by continuously extending, in the norm of L%(R),
the Fourier transform from L!(R) N L?(R) to L?(R), it follows by Theorem 4.4.7 that

IF 1112 = lIf1l2,

that is, F is an isometry on L?(R). Consider now an arbitrary function f € L'(R) N L?(R)
and let y > 0. In these conditions we know, by definition, that the function Py € Ll(R),
hence applying Theorem 4.3.2 it follows that

P,x f = f+P, e L'(R)NL*(R).

Due to the fact that f € L'(R) N L?(R), applying Theorems 4.2.3 and 4.4.7 we have that
]"\e L*®(R) N L*(R), and observing the definition of the Poisson kernel we know that
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b, e LY(R) N L*(R). Consequently using Theorem 4.2.3 and analyzing Example 4.4.4, we
guarantee that 13; € L®(R) N LY(R) and thus, using Theorem 4.3.3, we can assure that

7°P,-7B,
therefore applying Holder’s inequality [2, Theorem 7.9], we have
f+P,=fP, e L'(R).

Due to the fact that f+ P, € L'(R) N L%(R), it follows, by Theorem 4.4.7, that ]ﬂ?y € L*(R)
and thus we get
f+P, e L'(R)NL*(R).

Since f * Py,f/*?y € L'(R) N L?(R), using Theorem 4.4.5 we have that
GJ4(f*Py) :f"'Pyr

thus if we take the limit in L?(R) when v | 0 in both sides of the previous equation and
observe that &, f = f « P, then applying Theorem 4.4.3 we get Fif = f, thatis, F* =1,
Let f, € L?(R). Then there exists f; = %> f, € L?(R) such that

L=%f,

that is, F is a surjective operator. Taking account that F is an isometry, bounded and
surjective, we can conclude, by the previous theorem that % is a unitary operator on L?(R)

as we wanted to prove. O
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5

BaANACH ALGEBRAS OF ALMOsST PERIODIC

FOURIER MULTIPLIERS

In the final chapter, we start by presenting several definitions and theorems regarding
Banach algebras, maximal ideals and multiplicative linear functionals. After that, we will
define the algebra AP,(R) as the closure of APP(R) in the norm of the set of Fourier multi-
pliers, which are functions that belong to L°(R) and satisfy certain properties. Moreover,
we also verify that AP,(R) is embedded densely in AP(R). Following that, we define the al-
gebra APW(R) as the set of all trigonometric convergent series and we prove that APW(R)
is embedded densely not only in AP,(R), but also in AP(R). In fact, we will also see that
the Banach algebra I!'(R) is isometrically isomorphic to APW(R) and, with that being
done, we prove that the Gelfand space of APW(R) is homeomorphic to the Gelfand space
of AP(R). We finish this work by establishing that the algebra AP,(R) is inverse-closed in
AP(R).

5.1 Basic Definitions, Banach Algebras and C*-Algebras

In this chapter, we will always consider non-null algebras over C.

Definition 5.1.1. Let D be a non empty set. We say that D is a directed set if and only
if D is a set with a partial order relation, <, such that for each x,y € D there exists ze€ D

that verifies
x<z, v<az

Definition 5.1.2. Let (X, 7) be a topological space and D a directed set. Aneton X is a
function defined by

x:D—->X, apx(a):=x,.

Definition 5.1.3. Let (X, 7) be a topological space and let (x,) be a net on X, defined on

a directed set D. We say that (x,) converges to x € X, and we denote it by x, — x, if and
o

only if for each neighborhood V of the element x there exists p € D such that

azp=>x,€V.
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Definition 5.1.4. Let 9 be a vector space over C. We say that ¢ is an algebra if and only
if there exists a binary operation e 9 x 9l — o such that for every x,y,z € o and for each
AeC,

1. xe(yez)=(xeyp)ez;
2. (Ax)ep=xe(Ay)=A(xep);
3. xe(y+z)=xep+xez;
4 (x+y)ez=xez+yez

In this work we will denote x e y = xy for any x,y € o and we will always consider that

d = {0}. We say that an algebra is commutative if it satisfies

Xy =yx

for each x,y € 9. Moreover, we say that o is a unital algebra (or an algebra with unit) if

there exists an element e € 9 such that
ea=ae=a

for every a € 4, and an element u € o is invertible in o if there is v € of such that
uv =vu =e.

Definition 5.1.5. Let o be an algebra with unit and let 9 be a subalgebra of sf. We say
that 9 is a unital subalgebra of o if the unit of o belongs to 9.

Definition 5.1.6. Let o be an algebra with unit and 9 a unital subalgebra of 9. We say
that & is inverse-closed in o if and only if every element of % which is invertible in o, is

also invertible in 9.

Definition 5.1.7. Let 4 be an algebra over C. We say that o is a normed algebra if and
only if there exists a norm || -|| : f — R that verifies for every x,y € d,
[yl < [lxIl {91l

Definition 5.1.8. Let of be a normed algebra over C. We say that o is a Banach algebra
if and only if o is a complete space, that is, a space where all Cauchy sequences are

convergent.

The following theorem is a well known fact from Functional Analysis, and it will be

useful later in this work.

Theorem 5.1.9 ([3, Theorem 1.2.1]). Let o be a unital Banach algebra with unit e and let

xed. If ||x|| < 1, then e — x is an invertible element and we have
o0
(e—x)' = Zx”.
n=0
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Proof. Let x € o be such that ||x|| < 1. Since o is a Banach algebra, it follows that ||x"|| <
||x||" for each n € N. Due to the fact that ||x|| < 1 we get that the series

[0}
> lxl”
n=0

is convergent in R. Hence, using the fact that ||x"|| < [|x[|", we get that the series

o
> I
n=0

is also convergent in R, which implies that
(&)
)~
n=0
is absolutely convergent in ¢f. Taking into account that o is a Banach space and the fact

that the series
(o)

)
n=0
is absolutely convergent, we can guarantee that this series is convergent to some element

s € d. Consider the sequence of partial sums (s,),cn defined by

n
Sy = Zxk.
k=0

Let n € N. Then

1 1
ll(e—x)s, —ell = lIs, —xs, —ell = [| = x"" || < [lx[I""" — 0
n—o00
and also
1 1
llsu(e—x)—ell = s, —spx—ell = [| - x"|| < |Ix]I""" — 0.
n—o00

Therefore the equality
sfe—x)=(e—x)s=e
holds, consequently ¢ — x is invertible and its inverse is given by (e —x)~! =s. O]

Definition 5.1.10. Let o be a Banach algebra. We say that o is a *-algebra if and only if
there exists a function *: of — o, which we call involution, such that for any x,y € o and
for each A € C,

L. (x+y)" =x"+7%
2. (Ax)* = Ax%
3. (x") =x;
4. (xy) =y*x"
Moreover, if o satisfies the C*-property, that is,
llaall = llall*

for each a € d, we say that o is a C*-algebra.
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5.2 Ideals and Invertibility

In this section we will recall some important properties of maximal ideals and their

relations with invertible elements of a Banach algebra.

Definition 5.2.1. Let o be an algebra and .¥ a subalgebra of f. We say that .¥ is an ideal
of d if and only if
iae¥, aiey,

for every i € .¥ and for each a € 4.

Definition 5.2.2. Let o be an algebra and .7 an ideal of . We say that .7 is a proper ideal
of d if and only if .F = d.

Definition 5.2.3. Let 9 be an algebra and . an ideal of /. We say that .¥ is a maximal
ideal of o if there is no proper ideal ¥ of o such that ¥ ¢ XK.

In the following theorem we will see that invertible elements do not belong to proper

ideals.

Theorem 5.2.4 ([3, Theorem 1.3.2]). Let o be a unital commutative Banach algebra and F a
proper ideal of d. If an element is invertible in o then that element does not belong to .F.

Proof. Suppose that x € o is invertible and suppose, by contradiction, that x € .¥. Since .¥
is an ideal, we can assure that x"!x = e € .¥ and consequently .¥ = ¢f which is impossible

because .7 is a proper ideal. O

In the next result we will prove that if an element does not belong to a maximal ideal,

then it must be invertible.

Theorem 5.2.5 ([14, Theorem 1.3.2]). Let o be a unital commutative Banach algebra and
x € d. If there is no maximal ideal .J of the algebra o such that x € J, then x is invertible.

Proof. Let us suppose that x is not invertible and consider the subalgebra .¥ of ol defined
by
Fi=ddx={ax:aed}.

In these conditions .¥ is an ideal of the algebra o because if i € ¥ and y € d, then there
exists a € d such that i = ax and thus

iy =(ax)y=(ay)x €S, vpi=ylax)=(va)xeJ.

Let e be the unit of 4. Since x = ex, it follows that x € .. The ideal .¥ must be a proper ideal
because otherwise we would have . = o, which is equivalent to say that e € .¥, therefore
we would have e = bx for some b € o which is impossible because we are assuming that
the element x is not invertible. Hence .¥ is a proper ideal that contains x. Taking into
account Krull’s Lemma [3, Proposition 1.3.1], we can guarantee that every proper ideal is
contained in some maximal ideal and we conclude that x belongs to some maximal ideal

X as we wanted to prove. O]
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We finish this section by proving that any maximal ideal of a unital commutative

Banach algebra is closed.

Theorem 5.2.6 ([3, Theorem 1.3.2]). Let o be a unital commutative Banach algebra and let
J be a maximal ideal of the algebra d. Then closy(.¥) is an ideal of A and .F is closed in d.

Proof. Let o be a unital commutative Banach algebra and let .¥ be a maximal ideal of the
algebra o. Consider a € o and x € closg(.¥). In these conditions there exists a sequence

(%) nen of terms in .F such that lim ||x, — x|| = 0, consequently, we have
n—00
lim [lax —ax,|| < lim ||al| [}x, - x[| = 0.
n—00 n—00

Therefore (ax,),cy is a sequence of elements in .¥, because .7 is an ideal of the algebra 4,
and we conclude that ax = xa € closy(.F), that is, closy(¥) is an ideal of o that contains ..

Since ¥ is a maximal ideal of 9 and .¥ C closy(.¥), it follows that closy(.¥) = .F or
closy(¥) = d. Suppose, by contradiction, that closy(.¥) = 9. It is known from [3, Theo-
rem 1.2.3] that, in a unital Banach algebra, the set of invertible elements is an open set.
Taking into account that e € g = closy(.¥), we can assure that there exists a sequence

(Vn)nen of elements in . such that
Jim [l = ell = 0

Using the previous equation and the fact that the set of invertible elements is open, we
can guarantee that there exists p € N such that if n > p, then y,, € G(d) where G(d) is the
set of invertible elements of the algebra d. But we know that if an element is invertible,
then it cannot belong to a maximal ideal, thus y,,1 € ¥ N G(d) is a contradiction and we
conclude that closy(¥) = 5. O

5.3 Multiplicative Linear Functionals

In this section we will start by proving important properties of multiplicative linear
functionals. Moreover, we will also study Gelfand’s theory regarding the relation between

these functionals and maximal ideals.

Definition 5.3.1. Let o be an algebra and ¢ : of — C a function defined on o. We say that

@ is a multiplicative linear functional if and only if
* pla+b)=pla)+ (D),
* p(Aa) = Agp(a),
* @(ab) = p(a)p(b),

for each a,b € o and A € C. We will denote by M(s) the set of all non-null multiplicative
linear functionals of the algebra d.
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In the following theorem we will analyse some important properties of multiplicative

linear functionals.

Theorem 5.3.2 ([3, Theorem 1.4.4]). Let o be a unital Banach algebra with unit e and let
@ € M(dA). Then the following properties hold:

2. @ is bounded and ||p|| = 1.

Proof. Since ¢ is a non-null multiplicative linear functional, there is x € o such that

@(x) # 0. Then
p(x) = p(xe) = p(x)p(e) = p(e) = 1.

Suppose, by contradiction, that there exists a € of such that |[a|| = 1 and |p(a)| > 1. In these

conditions we can assure, applying Theorem 5.1.9, that the element e — ﬁa is invertible

in of because ¢ is a Banach algebra and Hﬁa” <1, consequently the element

@(a) (e - ﬁa) =qp(a)e—a

is also an invertible element. Taking into account that ¢(¢@(a)e —a) = 0, it follows that
1=¢(e) = p((pa)e—a)(p(a)e—a)™") = p(p(a)e —a)p((p(a)e —a) ') = 0,

which is impossible. Hence we have that

llpll = suplp(a)l <1,
llal|=1

and due to the fact that ¢(e) = 1, we conclude that ||p|| = 1 as we wanted to prove. O

Theorem 5.3.3 ([3, Theorem 1.4.8]). Let s be a unital commutative Banach algebra and let
a € d. Then a is invertible in o if and only if @(a) = 0, for each ¢ € M(A).

Proof. Let a be an invertible element in o and let ¢ € (o). Then
e=aa ' =>1= (p(a)go(a_l),

which implies that ¢(a) # 0. For the proof of the sufficiency part, we refer to [3, Theo-
rem 1.4.8] or any other book on the theory of Banach algebras. O]

Definition 5.3.4. Let o be a unital commutative Banach algebra and a € 9. We define the
function
L,:M(d) > C, ¢ @a)

as the Gelfand transform of the element a.

The following theorem is an important theorem regarding Gelfand’s theory, which we

will not prove in this work.
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Theorem 5.3.5 ([3, Theorem 1.4.6]). Let o be a unital commutative Banach algebra. Then J
is a maximal ideal of d if and only if there exists a non-null multiplicative linear functional ¢,
defined on d, that verifies

ker(p) = 7.

Taking into account the previous theorem, there is a unique correspondence between
the non-null multiplicative linear functionals and the maximal ideals of a unital commu-
tative Banach algebra. Consequently, we will also denote by (o) the set of all maximal
ideals in .

Definition 5.3.6. We will equip the space N(s) with the Gelfand topology, that is, the

topology given by arbitrary unions of finite intersections of sets of the form
{Fa_l(U) : U is open in C}.

In these conditions NM(d) is a subset of ', where 1’ denotes de dual space of d,
and the Gelfand topology coincides with the weak-* topology of of’, that is, the smallest
topology that makes continuous every function of the form

fo:d’—>C, @ @a),
where a € d. It is known from [13, Proposition 5.2.1] that if o is a Banach space then o’ is
a Hausdorff space under the weak-* topology. As basis of neighborhoods of a functional
@o € A’ we have the family of open sets
U(po,€,a1,...,a,) :={p ed’ :|p(a;)—pola;)l <€, i €{l,...,n}},

where € >0, ne€ Nand a4,...,a, € 4.

Definition 5.3.7. Given a net (¢, ) in 9’, we say that (¢, ) converges weakly-* to ¢ € d’,

and we write ¢, (—> ) @, if and only if ¢, (a) - @(a) for each a € d.
a(w*

In the following result we will prove that the Gelfand space M(s) is a compact Haus-
dorff space under the weak-* topology.

Theorem 5.3.8 ([3, Theorem 2.1.3]). Let o be a unital commutative Banach algebra. Then
M) is a compact Hausdorff space under the weak-* topology.

Proof. We know from Alaoglu’s Theorem [15, Theorem 1.4] that the closed ball
B(dl) = {p ed: llpll <1}

is a compact space under the weak-* topology. Taking in account the definition of NM(d)
and the fact that any non-null multiplicative linear functional has norm equal to 1, we
can assure that M(oA) C B(dd). Let (¢4)qaep, where D is a directed set, be a net of elements
in N(o) such that that ¢, a(:}) : @ € B(d4) and let x,y € 4. Then

plxy) = lim @, (xy) = lim @, (x)lim @, (y) = ¢ (x)p(y),
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consequently ¢ is a multiplicative linear functional in o. Since (¢, )qep is a net of ele-
ments in N(s) such that ¢,(e) = 1 for each a € d, it follows that ¢(e) = 1 and thus ¢
is a non-null multiplicative linear functional, that is, ¢ € N(f). Hence N(oA) is a closed
subspace of B(d4) and due to the fact that M(d) is a closed subspace of a compact Haus-
dorff space, we can guarantee that N1(sf) is a compact Hausdorff space as we wanted to

prove. O

Definition 5.3.9. Let ol be a Banach algebra and E C dl. We denote by alg(E) the smallest
closed subalgebra of o that contains E, that is,

m n;
alg(E) :=closg Z/\j I_[xf’k cmny,.. ny, €N, A €C, xj€E L.
=1 k=1

Moreover, we will call polynomials in elements X 1,...,X1 4+ X 1,-++» Xm,n, € E to the
elements of the form

m n;

P(X1,15- 0 X1 nyr e os X 1w s Xy, ) 2= E Al %k

=1 k=1

where m,ny,...,n,, € Nand A4,..., A, € C.

Definition 5.3.10. Let o be a unital Banach algebra with unit e. We say that K C o is a
system of generators of d if and only if e ¢ K and

d =alg (KU f{e}).

We finish this section by proving that, in fact, the Gelfand topology can be defined in

terms of a system of generators.

Theorem 5.3.11 ([7, Chapter 1, Section 5, Theorem 3]). Let o be a unital Banach algebra
with unit e, let K be a system of generators of o and let ¢y € N(sd). Then the sets of the form

U(@g,€,X1,...,Xp) :={@ e MUA) : |p(x;) —po(x;)| <€, i €{1,...,m}} (5.1)
where € >0, me Nand xy,...,x,, € K, form a basis of neighbourhoods of the element .

Proof. Let € >0, let n € N and let yy,...,y, € . We just need to prove that there exists a
neighbourhood of the form (5.1) contained in the neighbourhood

U(Po, € 91,--,9n) == {@p € MUSA) : |p(vi) — po(vi)l <€, i €{1,...,n}}.

Since K is a system of generators of d, it follows that there exist polynomials in elements

in K, Pz'(xl,l,i:---lxl,nl,,-,i:---xxm,-,l,i’---Ixm,-,nml.,,-,i): with i € {1,..., n}, that verify

l’l]"i

m;
€
IP; — il < 3 Pyi= Pi(xa, 1,00 Xty i o0 Xy Lo o0 Xy i) = E Aji ij,k,i
=T k=l
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for each i € {1,...,n}. Given ¢ € N(d) and x,y,z € o, using the fact that |p(a)| < ||al| for
each a € A, we have
lp(xy2) = o(xy2)l < [p(x)P(¥)@(2) = P(x)@(B)Po (2)] + lP(X) P (¥)Po(2) = P(x)Po (¥) o (2)]
+1p(x)Po(y)Po(2) = @o(x)@o()@o(2)l
= lpo (2l lp(x) — o (X)| + 1@(x) @0 (2)] |9 (¥) — o (¥
+lp ()l 19 (2) = po(2)]
<yl Izl I (x) = @o ()] + llxll Izl 9 (v) = o @) + X[ Iyl 19(2) — @o(2)!-

Therefore applying a similar reasoning as we did in the previous inequality, we get that

ﬁ P(z) - ﬁ(PO(Zk)
k=1 k=1

m
SZI|21||~-IIZk_1II llzkall- -zl 10 (20) = Po(2k)], (5.2)
k=1

lp(z1 -+ 2m) = Po(z1 - zm)| =

for every finite product of elements z,...,z,, € o with m e N. Let

.....

and let ¢ € U(¢y, 6,x1,1’1,...,x1,n1'1’1,...,xml’l,l,...,xmlinml,lll,...,xl,l’n,...,xmwnmmwn). Then

for each i € {1,...,n}, one has

1
lp(B) — o(P;)| < Zl/\j,il (1, X i) = @0 (X1, Xy, i)
i1

m; n],z
<Y Y il lbg el g e, il Dl il 90 1) = 0 (2 )]
j=1 k=1
m; n],z
< A gl H gl o el Dl S
j=1 k=1
€
<=
3

Therefore U((po,é,xlyl,l,...,xl,nl’hl,...,xml’lll,...,xml,nml,hl,...,xl,ljn,...,xmwnmwwn) is con-
tained in the set U(¢g, %,Pl,...,Pn). Let ¢ € U(¢y, %,Pl,...,Pn). Then for each i € {1,...,n},

we have

lp(i) = @o(i)l < lp(wi) — (Pl +1p(P;) = oo (B)| + o (P;) — @o(vi)l
<@l 1P; = will + ll@oll 1P = vill + 19 (P;) — o (P;)

€ €
=2||F; = pill + e (P) — o (Fy)] < 23+3=6

foreveryie{l...,n}.
Consequently, U(¢y, 5, Py,...,P,) is contained in the neighbourhood U(¢y,€,91,...,V,)
and thus the set U(¢g, 9, %11 1,-. DXy e Xy 1 Xy e X1 ..,xmwnmmwn) is

contained in the neighbourhood U(¢y,€,v1,...,v,) as we wanted to prove. O
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5.4 Extensions of Multiplicative Linear Functionals

In this section we will prove that the Gelfand space of a unital commutative Banach
algebra is homeomorphic to a closed subset of the Gelfand space of its embedded densely
subalgebras. Moreover, we will also see an important theorem regarding extensions of

multiplicative linear functionals.

Definition 5.4.1. Let of and % be normed algebras. We say that the algebra o is embedded
densely into the algebra % if and only if o C 9B, closg(sd) = B and if there exists ¢ > 0
such that for each x € o,

llxllg < cllxlls-

The following two results are going to be crucial in order to prove Theorem 5.7.5 and
Theorem 5.8.1.

Theorem 5.4.2 ([8, Chapter 7, Section 3, Proposition 1]). Let o and B be unital commutative
Banach algebras such that o is embedded densely in 9B. Then the space M(B) is homeomorphic
to a closed subset of N(dA).

Proof. Let R be the set of the multiplicative linear functionals of N1(sf) which admits a

unique extension to the multiplicative linear functionals of N11(%), that is,
R = {f e M(sd)| I g € M(B) : f(x) = g(x), for each x € o}

and consider
D:M(B) >R, g &

a function defined on the space N(%). We know from Theorem [3, Theorem 1.4.7] that
any commutative unital Banach algebra always contains a maximal ideal, therefore both
the sets N(%B) and N(o) are not the empty set. It is important to observe that the set R is
also different from the empty set. Indeed, we know that M1(%) = (@ therefore there exists an
element ¢ € M(%AB), consequently, we have that ¢y € M(d) and @ is the only multiplicative
linear functional that is an extension of ¢y in 9. For if x € B and if ¢y, p, € N(B) are
extensions of Plstr then due to the fact that o is embedded densely into & it follows that
there exists a sequence (x,),cn, with elements in o, such that

lim [|x —x,||lg = 0.
n—00
Hence we get that

@1(x) = lim @q(x,) = nhj{.lo (Plsﬂ(xn) = r}g{}o P2(x,) = Pa2(x)

n—-oo

which implies that ¢; = ¢, and thus & = (. Taking into account the definition of the set
R and the definition of the function @, we can see that @ is surjective. Given f, g € M(R),

it follows by the uniqueness of these extensions that
P(f)=P@Q) e fu=8a=f=8
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therefore the function @ is injective and thus bijective. Let € > 0, fy € M(%), n € N,
X1, X, €4, foi= folgﬂ’ and let

V(for€ X1, 0) = (f € R IF ()~ folxl <€, j € {L,...,m))

be a neighborhood of CD(%) = fo. Then

U(for€ %1, %y) = (g € MUB) : |g(x)) — folxj) < e, je{l,....n})

is a neighborhood of % that verifies CD(U(%, €,X1,...,X,)) € V(fo, € %1,...,%,), consequently
® is continuous. We know that, under the weak-* topology, N(s4) and (%) are Hausdorff
and compact spaces on the dual space of the algebras o and % respectively (see Theo-
rem 5.3.8). Since @ is a bijective continuous function and M (%) is compact, it follows
that @(NUAB)) = R is compact. But we also know that R is a subset of N(d) which is
Hausdorff, consequently R is closed. Taking into account that @ is a continuous bijective
correspondence between a compact and a Hausdorff space, we can assure that @ is a

homeomorphism as we wanted to prove. O

Theorem 5.4.3 ([8, Chapter 7, Section 3, Proposition 2]). Let o, B and € be unital commu-
tative Banach algebras such that d is embedded densely in B and B is embedded densely in
@. If every non-null multiplicative linear functional of the algebra d is extensible to a unique

multiplicative linear functional of the algebra €, then the same happens for the pair % and 6.

Proof. Let g € M(AB) and f = gjy. In these conditions we get that f € M(d), consequently
by our hypothesis there exists a unique h € N(6) such that f = hy and therefore gy = hyy.
Then hig is an extension of hjyg = gy, and this extension is unique. For if x € B and
if hy,hy € NM(AB) are two extensions of hyy, then due to the fact that the algebra o is

embedded densely into 9B, there exists a sequence (x,),cn of elements in o such that
Jim [lx —x;[lg = 0.
Hence we have
hy(x) = lim hy(x,) = 1im By (x,) = lim hy(x,) = hy(x),

therefore hy = h,. Thus we must have hjg = ¢ because g € M(RB) is also an extension of gy,
which implies that & is the unique extension of /g = ¢ because the algebra % is embedded
densely into the algebra 6. For if y € ‘6 and if h3, hy € N(6) are two extensions of g, then
due to the fact that the algebra % is embedded densely into 6, there exists a sequence

(Vn)nen of elements in 9B such that
lim Iy —,lls = 0.
Consequently, it follows that

hs3(y) = lim h3(y,) = lim g(p,) = lim hy(p,) = ha(y)

n—-oo

and we conclude that 4 is the unique extension of ¢ as we wanted to prove. O]
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5.5 Banach Algebra /'(R)

In this section we will give the definition of a character in the complex unit circle and
we will recall the Banach algebra I!(R). After that, we are going to prove that the Gelfand
space of I'(R) is homeomorphic to the space of all characters. Moreover, we will prove
that the set of multiplicative linear functionals of I!(R), corresponding to continuous

characters, is dense in the Gelfand space of I'(R).

Definition 5.5.1. Let (T,-) denote the multiplicative group of the complex unit circle and
(R, +) the additive group of real numbers. We say that x : (R,+) — (T,-) is a character if
and only if x is a homomorphism, that is,

x(x+v)=x(x)x(v)

for each x,y € R. The set of characters forms a group under the usual multiplication,

which we will denote by X.

Taking into account the previous definition, we can see that if x is a character, then
x(0) =1 and also that

oo b xy
XN = 0 T e "

for each A € R. It is immediate that the function e (x) := !4 is a character for every A € R.

x(4),

In fact, it is known from [11, Chapter 14, Section A, Example 1] that if f is a continuous
character, then f = ¢, for some p € R.

Definition 5.5.2. Let x : R — C be a complex function. We say that x is absolutely

summable if and only if it is different from zero on an at most countable set and if
lll =) " Ix(A)] < oo,
A€R

In fact, the set of all absolutely summable functions on R forms a vector space under the
usual sum and multiplication by complex numbers. With the norm stated above, it is

well known that this set is a Banach space and we will denote it by I!(R).

We can introduce in I!(R) an operation of multiplication of elements, where the prod-
uct of two elements x,p € ll(R) is defined by

(x*p)(t) = Zx(t ~)y(d), teR.
AeR
This product is indeed well defined due to the fact that
S bett = MO < Il Y (0] = el 9l < oo,

AeR AeR

and, with this new operation, the space I!(R) becomes a unital commutative Banach

algebra.
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Definition 5.5.3. A basis of neighbourhoods of an element x, € X is given by

(€ X x(x) - xolxl <€, j € (L,...,m)
where € > 0 and xq,...,x, € R.

Theorem 5.5.4 ([7, Chapter 5, Section 29, Theorem 1]). Let H := I}(R). Then the space
M(H) is homeomorphic to the space X, where the first set is equipped with the weak-* topology
and the latter set equipped with the topology described in Definition 5.5.3.

Proof. Consider the function

1, ift=0,
o(t) := (5.3)
0, ift=0,

for each t € R. Taking into account the definition of the function 9, we have that 6 € H.

Given t, A, p € R, we can guarantee that

(T po* Ty ZT Ao(E=8)T 5(s ZO (t—s- - =T pus(t), (5.4
seR seR

where T) s := T,6 denotes the translation function of 6 with respect to A € R given in
Definition 2.1.7. Let ¢ € N(H) and let

Xo(A) :=@(T-,0),
for each A € R. Since ¢ € N(H) and equation (5.4) holds, it follows that
XA+ 1) =@(T_)_,0) = p(T_1 0+ T_;,0) = ¢(T_10)p(T_,0) = X (D) X (1), (5.5)
for any A, u € R. Due to the fact that |p(h)| < ||h||y for each h € H, we can assure that
X (M =1p(T_pd) < I T-p 0l =1

for every A € R, and since 6 = Ty 6 is the unit of the algebra H, we have x,(0) = ¢(Tp0) = 1
Hence, applying equality (5.5) with y = —A, we get that [x,(A)| = 1 for each A € R and we
conclude that x,, is indeed a character of (R, +). Due to the fact that every element x € H

x= Zx(/\)T_Aé,

AeR

can be represented in the form

where the previous series converges in the norm of H, it follows from the definition of

the character x,, that

p(x) = Zx(i)xq;(k)- (5.6)

AeR

Given yx € X, consider the function

hy:H—>C, x> Zx(/\)x(/\).

AeR
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In these conditions the function h, is a multiplicative linear functional defined on H,

because it is a linear functional by definition, and satisfies

he(eey) =) (xep)x(N)=) ) x(A=wy(ux() =) 3w ) x(A=pux(A)

AeR AeR peR ueR AeR
=) 3(1W)) xA-px(A-p+p)= Xy (1)) (A= mx(A-p)
pueR AeR HeR AeR
= [Zy(ﬂ)x(ﬂ)][zx(k)x(k)] = Iy (P () = By () ().
pueR keR

Since

=) 3(N)x(h) =

AeR
it follows that £, is different from the null function and therefore h, € N(H). Let

O:MH) =X, @ xg (5.7)
and let y € X. Then

X, (A) = e (T_18) = ) 8(E=A)x(t) = x(A),

for each A € R, and, consequently, x; = x. Hence there exists f = h) € M(H) such that
D(f) = x, that is, @ is surjective. Given ¢y, ¢, € M(H), for every A € R and x € H we

guarantee, using equation (5.6), that

P (1) = D(p2) = X, (1) = X, (A) = P1(x) = P2(x) = @1 = @2,

thus @ is injective, and taking into account that @ is surjective, we can conclude that @ is
bijective. The functions T_,0, with A € R\ {0}, form a system of generators of the algebra
H and therefore, applying Theorem 5.3.11, the sets of type

{p e M(H) : [9(T_1,6) = po(T_p,0)l =[x (M) — X g, (M) <€ k€{l,..,n}} (5.8

form a basis of neighborhoods of the element ¢y € N(H), wheree >0,n e Nand A4,..., A, €
R\ {0}. Let ¢y € NM(H) and let

Vi=V(Xpp € Ao An) i={Xp € Xt |Xp(Ar) — X, (M) <€, ke {l,...,n}}

be a neighborhood of ®(¢g) = x,- Then there is a neighborhood

U= U@y € Ay Ay) i={ € M(H) : [@(T_1, 8) — po(T_p 0)| < €, k€ {1,...,n}}

of ¢y such that ®(U) C V and we conclude that @ is continuous. Using a similar reasoning
to the function @1, we can assure that ®! is continuous and we conclude that @ is a

homeomorphism between N(H) and X as we wanted to prove. O
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In this work, since N(H) is homeomorphic to X, we will denote by N (H) the set of
non-null multiplicative linear functionals of H, corresponding to continuous characters
xa(t)=e
for each A e R and t € R, that is,
Mc(H) :={p e M(H)| A eR: O(p)=¢,},
where @ is the function defined in statement (5.7).

Theorem 5.5.5 ([7, Chapter 5, Section 29, Theorem 2]). Let H := ['(R). Then the set Mc(H)
is dense in N(H).

Proof. Let ¢g € M(H) and let

Ulpo, € x1,...,x;) :={p € M(H) : [@(x;) — po(x;)l < €,j €{1,..., t}}

be an arbitrary neighbourhood of ¢,, where € >0, t e Nand xq,...,x; € H. Let 0 be given
by (5.3). Taking into account the proof of the previous theorem and statement (5.8), we
can assure that U(¢o,€,x1,...,%;) contains a neighbourhood U’(¢g,€1,q,...,A,) of the

form
U':=U' (¢ €1, A1, An) = {p € N(H) : |@(T-1, 8) — po(T-1,0)| < €1, k€ {1,...,n}},

where Ay,..., A, € R\ {0} and €; > 0. We can select numbers {Ay,..., A } € {Aq,..., A},
where m € N, such that the numbers {1y ,..., A } are linearly independent over the field

of rational numbers, that is, given Qfyreenr g, € Q,
ak1/\k1 + ---+c¥km/\km =0= ()(k1 == akm = 0,

and also that every Ay, with k € {1,...,n}, can be expressed as a linear combination of the
values {1y ,..., Ax, } with rational coefficients, where j € {1,...,m}. Consequently, for each

i€{l,...,n}, there exist ay, ..., ay, ; € Q such that
-A; = akl,i/\kl +eeet ak,,,,i/\km-

Let L be the least common multiple of the denominators of the coefficients of all these
terms, that is, let
L:=lcm (Olkl’l, e Oy 1o s O pree ey akm,n).

Then the numbers Ay, with k € {1,...,n}, can be expressed in terms of the numbers

Ak

]

K=

where j € {1,...,m}, in the form of linear combinations with integer coefficients, that is,
for each i € {1,...,n} there exist By, ;,..., ki € Z such that

=Ai = Bryitr+ 0+ B, ibm
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where, in fact,
Prii =L @kpiveeos Pr,i = L a,,i

for every i € {1,...,n}. In these conditions the elements y; are also linearly independent
over the rational numbers, and the functions T,/\ké, with k € {1,...,n}, are products of
the functions T_, 6 and T}, 6, with j € {1,...,m}, where this product refers to the product
defined in I'(H).

Let us establish an auxiliary fact. Let f € Z\ {0} and let y € R. If g > 0, then it is
immediate that for every ¢ € M(H), one has

|9(T5,8) — Po( Ty ud)| = 1((T,0)) P! = (0o (T,,0))P].

On the other hand, if f <0, then observing that

for each A € R, we can guarantee that

19(T5,8) = o Ty,u0)| = (T SN = (o(T_,6)) Pl
=1 ()P = (x g () P]
= (X (1)1 = (x g (=) P
=1 (=P = (e gy (=) P
= (@(T,0))* = (0o (T,,5))P.
Thus, for all e Z\ {0} and p eR,
|9(T5,8) — o( Ty ud)| = 1((T,0))P! = (0o (T,,8))P]. (5.9)

If j € {1,...,n}, then using inequality (5.2), equality (5.9) and the fact that ||T)0|| = 1 for
every A € R, one has

|§0(T—/\]5) - (F)O(T—Ajé)l = |(p(Tﬁk1,]'[41+"'+ﬂkm’]']4m6) - (PO(T/Skl,jy1+~~-+/3km,]~/4m5)'

< Z|(P(Tﬁk$,]‘}456) - (PO(Tﬁks,jI‘sé)|

|((T,, 0)Preil = (o (T, 0)) Pl

<) Bk, jl l9(T, 0) = @o(T, 6)l. (5.10)
s=1
Let .
" _
€y = €1 min {1+Z|ﬁk5’j|]
""" s=1
and let

U”:=U" (@0, €2 pi1,--r pim) = 1@ € MUH) 1 [p(T_,.6) — @o(T-,,0)| < €2, j € {L,...,m}}.
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If ¢ € U’, then it follows from inequality (5.10) that for all j € {1,...,n},

m m
(T 0,0) = @o(T- N < ) IBi sl 19(Ty,0) = @o(Ty0) < €2 ) I jl <€,
s=1 s=1
that is, ¢ € U’ and thus we proved that U” C U".

We can consider that the character corresponding to @ verifies x4, (y;) = e27ia

i, for
some a; € R and j € {1,...,m} because the function ¢, is surjective in T for any A € R\ {0}.
Due to the fact that the function e, is uniformly continuous in R for each A € R, there

exists 11, > 0 such that for every t,t, € R we have
|ty —t2] <7e, = |t —e2| < e, (5.11)

Taking into account Kronecker’s Theorem [10, Theorem 444], thereis ty € Rand py,...,p,, €
Z satisfying

e,
laj —topj —pjl < Py
that is,

|27a; - 2mtp; — 2mtop | <1,
for each j € {1,...,m}. Then, using inequality (5.11), we get that

|e2niaj—2nipj _ e27‘lit0/4j| |62T(iu]-e—2nipj _ e2m’t0y]-| — |p2Titop; _ eZTcia-

e i| < €y,

that is
|20 — X o0 ()] < €2
for each j € {1,..., m}. Consequently the neighbourhood U”(¢y, €3, pi1,..., §y;) contains the

_ eZwt()ix,

element ¢* € NM¢(H) corresponding to the continuous character e;, (x) := and

since U” (g, €2, f1,---» ) € U(@o, €,%1,...,%;), it follows that ¢* € U(gg,€,x1,...,%x;) as

we wanted to prove. O]

5.6 C'-Algebra AP(R)and Banach Algebra AP,(R)

Let us recall that we defined the space AP(R) as the closure, in L*(R), of the space APP(R)
of all finite sums of trigonometric polynomial functions. The following theorem show us
that AP(R) is, in fact, a commutative C*-algebra.

Theorem 5.6.1. The set AP(R) is a commutative C*-subalgebra of L*(R).

Proof. Since L*(R) is a Banach space and since AP(R) is a closed subspace of L*(R),
because it is the closure of APP(R), it follows that AP(R) is indeed a Banach space. Let
f,g,he AP(R) and A € C. Then there exist sequences (f,,),en (£1)neny and (h;,) ey of terms
in APP(R) such that

Jijgoﬂf — fullLo®) = 0,

lim [lg = gullLe() = 0,
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Tim [ (2 = 0.

Then, for each x € R, we have

L (f8)(x) = f(x)g(x) = lim £,(x) lim g,(x) = lim f,(x)g,(x) = lim g, (x)f,(x)

n—-oo

= lim g,(x) lim f,(x) = g(x)f (x) = (gf)(x)

n—-oo

2. (F(gh)(x) = lim f,(x)(lim g, (x) lim h, (x)) = (lim f,(x) lim g, (x)) lim J, (x)

= ((f@In)(x)
3. (Af(x)g(x) = (A lim £,(x)) lim g,(x) = lim £, (x)(1 lim g, (x)) = f (x)(Ag(x))

4. f(x)(g(x) +h(x)) = lim f,(x)(lim g,(x)+ lim h,(x))

= 1im £, (x) lim g,(x) + Tim £, (x) Tim h, (x) = £(x)g(x) + f (x)h();

n—oo

5. (f(x) +g(x))h(x) = (lim £,(x)+ lim g, (x)) lim h, (x)

= lim f,(x) lim h,(x)+ lim g,(x) lim h,(x) = f(x)h(x) + g(x)h(x);

n—oo n—oo n—oo n—oo
6. |If gllL(r) = sup |f (x)g(x)| < sup |f (x) sup [g(x)| = l|f L (w) IgllL(r)
xeR xeR xeR

Consequently AP(R) is a commutative Banach algebra. Consider the operation * to be
the conjugate operation that we know it is well defined in C. It follows that for every
f,g€AP(R), for any A € C and for each x € R,

L (f(x) +8(x))" = f(x) +g(x) = lim f,(x) + lim g,(x) = f*(x) + g"(x);

n—-oo

(Af() =Af(x) =1 lim f,(x)=Af*(x)

3. ((f(x)y)" = lim f,(x) = f(x);

n—-oo

4. (f(x)g(x)" = f(x)g(x) = lim g, (x) lim f,(x) = g"(x)f"(x).

n—oo

That is, = verifies all the proprieties of an involution and thus AP(R) is a commutative
*-algebra. Let ¢ € AP(R). Then

2
9" Plizeo(ry = [PPllo(ry = sup lp(x)p(x)| = sup |(@(x))?| = (SUP |(P(x)|) = ||(P||fm(R)
xeR xeR xeR

consequently for every f € AP(R) we have

1F* flleo®y = If 1o gy

Hence AP(R) verifies the C*-property and we conclude that AP(R) is indeed a commuta-
tive C*-subalgebra of L*(R). O
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Definition 5.6.2. Let ¢ € L(R) and 1 < p < co. We say that ¢ is a Fourier multiplier on
LP(R) if and only if the map f + (F~1¢F)(f) maps L>(R) N LP(R) into itself and extends
to a unique bounded operator on LP(R), where the latter operator is denoted by W(g .

In this work we will denote by M,(RR) the set of all Fourier multipliers on LP(R) and it
is known, from [9, Proposition 2.5.13], that M,(R) is a Banach algebra under the norm

llplla, ) := ”W(g”B(LP(R))I ¢ € M,(R). (5.12)

Example 5.6.3. Given A € R, p €]1,+0c0[ and f € LP(R), consider the translation operator
U, € B(LP(R)) defined by

fe U, (U)):=f(t=2)

for every t € R. Let f € L*>(R) N LP(R) and x € R. Then there exists a sequence (f,)uen C
L'(R) N L?*(R) such that

Tim [If = fyllo = 0.
Consequently we have

—

o +00 . +00 . . -
O = [ futt-e 2 de= [ g0 2 ds = e 2T ) = G195 £ ),
where ¢(x) := e~2™**, which implies, applying the limit when 1 — co, that

F(ULf)(x) =F(F ' F f)(x).

Taking into account the previous equality and the fact that the space L?(R) N LP(R) is

dense in LP(R), it follows that U, = W(g and therefore, using the fact that M,(R) is an

algebra, we get that the set APP(R) is contained in the set M,(R).

Definition 5.6.4. Consider 1 <p < oo and let M,(R) be the set of all Fourier multipliers
on LP(R). Then we define AP,(R) as the closure of APP(R) in Mj,(R), that is,

APP(R) = ClOSMp(R)(APP(]R))
Theorem 5.6.5. Let p €]1,+co[. Then the algebra AP,(R) is embedded densely in AP(R).

Proof. Taking into account the definition of the set M,(R) we have M,,(R) C L*(R), and it
is know from [6, Proposition 2.4] that

lpllLo(m) < ”W(g”B(LP(R)) =llPllm, ), ¢ € Mp(R).
Consequently, M, (R) is continuously embedded into L*(R) and thus, using the fact that

Pl ) = lpllapm),  NPlim, @) = lPllap, ).

it follows that the space AP,(R) is continuously embedded into the space AP(R). Let
@ € AP(R). Then there exists a sequence (D,,),cny € APP(R) such that

Jim [[D — @, [|pe () = 0.
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Since APP(R) C AP,(R), we have that the sequence (®,),cy satisfies @, € AP,(R) for each
n €N, and also

lim [P~ @, [|ape) = lim (|~ Dyl () = 0.

Therefore
CIOSAP(R) (APp (R)) = AP(R),

that is, AP,(R) is embedded densely into AP(R). O

5.7 Banach Algebra APW(R)

In this section we will define the Banach algebra APW (R) and we will prove that APW(R)
is embedded densely in AP,(R) and in AP(R). Moreover, we will prove that I'(R) is isomet-
rically isomorphic to APW(R) and that the Gelfand space of APW(R) is homeomorphic
to the Gelfand space of AP(R).

Definition 5.7.1. Let APW(R) denote the set of all functions f : R — C which can be

written in the form
(o)
f(x):= Zajei’\fx
j=1
and satisfy

(]
fllapwr) = Zlﬂﬂ < oo,
j=1

where A; are arbitrary distinct real numbers and a; are arbitrary complex numbers. It is
known, from a similar result from [12, Chapter 1, Section 6.1, Lemma 1], that the space
APW (R), under the usual operations of multiplication by a scalar, sum of two functions

and multiplication of two functions, is a commutative unital Banach algebra.

Theorem 5.7.2. For each p €]1,+o0], the algebra APW (R) is embedded densely in the algebra
AP, (R).

Proof. Taking into account the definition of the spaces APW(R) and AP,(R), it follows
that APW(R) C AP,(R). Let ¢ € AP,(R). Then there exists a sequence (¢,,),cy such that
¢, € APP(R) C M,(R) for every n € N, and verify

lim [l = pulla, () = O-

Since ¢, € APP(R), there are a,1,...,a,,, € C and distinct numbers A,,,..., 1, € R
such that

iAy 1% idyk, X

¢n(x) =au€ teotay e

Analyzing Example 5.6.3 and using the fact that the Fourier transform is a linear operator,

we can assure that for each n € N, one has

_ 0
ap 1 Uﬁ/\m +otag, Uﬁ/\ = W¢n

n,ky
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where U%/\n e U%/\”k € B(LP(R)) are translation operators. As a consequence of the

definition, any translation operator has norm equal to 1, hence

lpullap,®) = lIPnllm,r) = ”W(gﬂllb(LP(]R)) Slapl+-+lane | = lPullapw )

for all n € N, therefore

pllap,®) < lIPllapwr),
that is, APW(R) is continuously embedded into AP,(R). Consequently we get that

CIOSAPP(R) (APW(R)) c APp(R)

Let f € AP,(R) = ClosMp(R)(APP(]R)). Then there exists a sequence (f,),en such that f, €
APP(R) for each n € N, and

Jim [If = fulla, () = O-
Due to the fact that APP(R) € APW(R), we have that f, € APW(R) for every n € N. In
these conditions

Lim [If = fullap, @) = Hm lIf = fullm, @) = 0,

therefore (f,),en is @ sequence of elements in APW(R) that converge uniformly in the
norm APp(]R) to f, thatis, f € closApp(R) (APW(R)) and we conclude that

ClOSApp(R)(APW(R)) = App (R)

Theorem 5.7.3. The algebra APW (R) is embedded densely into the algebra AP(R).

Proof. Let p €]1,+co[. Taking into account the previous theorem and Theorem 5.6.5, it
follows that APW(R) is continuously embedded into AP,(R) and AP,(R) is continuously
embedded into AP(R), that is, every element f € APW (R) satisfies

I llap@) < NIfllap,@) < Ifllapw(r)-
Hence we have that
closapr)(APW(R)) C AP(R).
Let f € AP(R) = clos;w(gr)(APP(R)). Then there exists a sequence (f,),en such that f, €
APP(R) for each n € N, and
HILHC}OHf — fullLo®) = 0.
Due to the fact that APP(R) € APW(R), we have that f, € APW(R) for every n € N. In
these conditions
Jim [If = fullape) = Hm lIf = fullio®) = 0,
therefore (f,),ey is @ sequence of elements in APW(R) that converge uniformly in the
norm AP(R) to f, that is, f € closspr)(APW(R)) and we conclude that

ClOSAP(R) (APW(]R)) = AP(R)
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In the next result we will see that, in fact, the Banach algebras I!(R) and APW (R) are

isometrically isomorphic.

Theorem 5.7.4. The Banach algebra I'(R) is isometrically isomorphic to the Banach algebra
APW(R).

Proof. Let us consider the operator

T:I1YR) > APW(R), x> f(t):= qu)e“f.
AeR

In these conditions for every x,v € [!(R) and for each a € C, we have

T(x+y)=) (x+p)(N)e™ =) x(A)et'+ ) p(N)et = T(x) + T(y),

AeR AeR AeR
T(ax)=) (ax)(D)e™ =a ) x(D)e™ = aT(),
AeR AeR
T(X*V)ZZ(X*Z/ z/\t ZZ (A= s)telst
AeR AeR seR
- [Zume"’”][D(s)ei“] = T()T(y)
ueR seR

Consequently, T is a linear operator that preserves the multiplication between the two

algebras. Due to the fact that
) )

ITll=  sup IT)lapwer) _ IeR C1<oo
xel (R)\{0} [l (m xell \{o Z|x
AeR

it follows that T is a bounded operator. Taking into account that I'(R) and APW (R) are
Banach spaces, we just need to prove that T is bijective and isometric and the proof is

done. Let f(t):= ajei’\ft € APW(R) and consider the function
j=1
aj, if JjeN: A=41,
x(A):=
0, otherwise,

for each A € R. Then, by construction, we have that
RCUEP NI
AeR

and also that T(x) = f, which implies that T is surjective. Let x,y € I'(R). Taking into

account the Parseval Identity (see Theorem 3.4.8), one has

X At = Y ¢l
:>Z (A)ezt Z (1) At

AeR AeER
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N Z x y z/\t

AeR
= 0=M= Zux—ymz
AeR
= (x-y)(A)=0, foreachAeR

=>x=7.

Therefore T is a bounded bijective linear operator, and thus the Banach algebra I'(R) is
isomorphic to the Banach algebra APW(R). Due to the fact that

ITCMapwa = ) ) =l e

AeR

for each x € I'(R), it follows that T is isometric and we conclude that /! (R) is isometrically

isomorphic to APW(R) as we wanted to prove. O

As we analysed before, the Banach algebra APW (R) can be identified with the Banach
algebra I'(R), consequently, there exits a homeomorphism, W, between M(APW(R)) and
M(I'(R)) defined by

¥ MAPW(R)) - M('(R)), @+ ¢@oT,

where T is the isometric isomorphism defined in the previous theorem. Therefore, apply-

ing Theorem 5.5.5, we have that
Mc(APW(R)) = {p € MAPW(R))[ A eR: O(W(g)) = ey},

where @ is the function defined in statement (5.7), is dense in M(APW(R)).
The proof of the following theorem is analogous to that one of [8, Chapter 7, Section 3,
Theorem 3.3], where the authors considered the similar problem for some algebras § and

8, containing the subalgebras APW(R) and AP(R), respectively.
Theorem 5.7.5. The spaces NM(APW (R)) and M(AP(R)) are homeomorphic.

Proof. Taking into account Theorem 5.4.2 and the fact that the Banach algebra APW(R)
is embedded densely into AP(R), we get that the space M(AP(R)) is homeomorphic to the
closed set ® C M(APW(R)) defined by

={f e MAPW(R))| 3'g e M(AP(R)): f(x) = g(x), for each x e APW(R)}.

Let ¢ € M (APW(R)). Then ¢ € N(APW(R)) and there exists A € R such that ®(W(¢)) =
ey, where @ is the function defined in statement (5.7) and W is the homeomorphism
between M(APW(R)) and M(I!(R)) defined above. Taking into account definition (5.6),

we know that the function ¢ o T satisfies

(poT)x)= ) x(s)e™,

seR
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for each x € I'(R). Let us consider the function ¢ defined by

P@)=p(T(x) =) x(s)e'™, if yeAPW(R),
seR

lim ¢(v,) = lim @(T(x,)) = lim Y x,(s)e'*, if yeAP(R)\APW(R),

seR

where (,,) ey is any sequence of elements in APW(RR) that converges to y, which exists
because APW(R) is embedded densely in AP(R), and x, (x,,),en € [!(R) are the only ele-
ments that verify y = T(x) and y,, = T(x,,) for each n € N. In these conditions ¢ is the only
extension of ¢ to AP(R), that is, ¢ € R and therefore it follows that N (APW(R)) C R.
Due to the fact M- (APW(R)) is dense in N(APW(R)) and Mc(APW(R)) C R C
M(APW(R)), we get that R is dense in M(APW(R)), and due to the fact that R is a
closed set we have that ® = M(APW(RR)) as we wanted to prove. O

5.8 Inverse Closedness of AP,(R)in AP(R) and in L*(R)

In order to establish the inverse closedness of AP,(R) in AP(R), we are going to prove that
M(AP(R)) is homeomorphic to M(AP,(R)), and we will also characterize the invertible
elements in AP,(R).

The proof of the following theorem is analogous to that one of [8, Chapter 7, Section 3,
Theorem 3.4], where the authors considered the similar problem for some algebras § and
8, containing the subalgebras APW(R) and AP(R), respectively.

Theorem 5.8.1. Let ¢ € N(AP(R)). Then 1 := PlAP,(R) belongs to M(AP,(R)), and all of the
non-null multiplicative linear functionals of AP,(R) are exhausted by the functionals of this
kind, that is, M(AP(R)) is homeomorphic to M(AP,(R)).

Proof. Applying Theorem 5.7.5, it follows that NTY(APW(R)) and N(AP(R)) are homeomor-
phic. Taking into account Theorem 5.4.3, that APW(R) is embedded densely in AP,(R)
and AP,(R) is embedded densely in AP(R), it follows that N(AP(RR)) is homeomorphic to
M(AP,(R)) as we wanted to prove. O

We are now in position to prove the main result of this section.

Theorem 5.8.2 ([5, Proposition 19.4]). Let p €]1,+oco[. An element f € AP,(R) is invertible
if and only if

inf 0.

inf |f (%) >

Proof. Let f € AP,(R) be an invertible element. Taking into account Theorem 5.6.5, it
follows that

AP,

»(R) C AP(R),
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consequently, f is also invertible in AP(R) and, applying Theorem 3.5.4, we get that
f € U(R) and also that

inf .
inf If(x)[>0

Suppose now that f € APp (R) verifies
inf > 0.
chlgR |f(x)|

In these conditions, using Theorem 2.2.4, we get that f is invertible in AP(R) and, conse-

quently, applying Theorem 5.3.3, we get that

p(f)=0

for each ¢ € M(AP(R)). Suppose, by contradiction, that there exists ¢q € M(AP,(R)) such
that ¢((f) = 0. Then, taking into account Theorem 5.8.1, it follows that N(AP(R)) is
homeomorphic to M(AP,(R)) and thus there is ¢, € M(AP(R)) that verifies

Po(a) = @p(a)

for every a € AP, (R). Therefore we have

©o(f)=po(f) =0,

which is impossible because f is invertible in AP(R). Hence ¢(f) = 0 for any ¢ € M(AP,(R))
which implies, by Theorem 5.3.3, that f is invertible in AP, (R) as we wanted to prove. [

Applying the previous theorem, our desired result is immediate.

Theorem 5.8.3 ([5, Proposition 19.4]). The algebra AP,(R) is inverse-closed in AP(R), and

therefore is inverse-closed in L*°(R).

Proof. Let i € AP,(R) such that ¢ is invertible in AP(R). In these conditions, using Theo-
rems 2.2.4 and 3.5.4, we have that i) € U(R) and

inf 0.
inf [P(x)| >

Applying Theorem 5.8.2, we conclude that ¢ is also invertible in AP,(RR) as we wanted to
prove. O
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