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Abstract

With this work, we intend to study the relation between uniformly almost periodic func-

tions and the Fourier transform. To this end, we start by defining the concept of a uni-

formly almost periodic function and we study several important algebraic and topological

properties of these functions.

Afterwards, we define a new class of functions, which we will call normal functions,

and we will show that this class of functions is precisely equal to the set of uniformly

almost periodic functions. We then define another class of functions, which we shall

denote by AP (R), and we will define it as the closure, on L∞(R), of trigonometric polyno-

mial functions, and we prove that this set also coincides with the set of uniformly almost

periodic functions. We are then left with three equivalent definitions established.

We then define the Fourier transform of a function belonging to L1(R) and, after

studying some of its most important properties, we extend this concept to functions that

belong to L2(R).

After analyzing significant properties concerning Banach algebras, maximal ideals

and multiplicative linear functionals, we define the algebra, APp(R) as the closure, in the

norm of the Fourier multipliers, of trigonometric polynomial functions, and we conclude

this paper by proving that the algebra APp(R) is inverse-closed in AP (R).

Keywords: Uniformly Almost Periodic Function; Fourier Transform; Banach Algebra;

Inverse-Closed Algebra.
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Resumo

Com a realização deste trabalho pretendemos estudar a relação que existe entre as funções

uniformemente quase periódicas e a transformada de Fourier. Com esse intuito, começa-

mos por definir o conceito de uma função uniformemente quase periódica e estudamos

várias propriedades algébricas e topológicas das mesmas.

Posteriormente, definimos uma nova classe de funções, que iremos designar por fun-

ções normais, e demonstraremos que esta classe de funções será mesmo igual ao conjunto

das funções uniformemente quase periódicas. Seguidamente, definimos outra classe de

funções, que iremos denotar porAP (R) e que será o fecho em L∞(R) das funções polinomi-

ais trigonométricas, e provamos que este conjunto também coincide com o conjunto das

funções uniformemente quase periódicas. Ficamos então com três definições equivalentes

estabelecidas.

Em seguida, definimos a transformada de Fourier de uma função pertencente a L1(R)

e, após estudarmos algumas das suas mais importantes propriedades, estendemos este

conceito para as funções de L2(R).

Depois de analisarmos propriedades significativas relativas a álgebras de Banach,

ideais maximais e funcionais lineares multiplicativos, definimos a álgebra, APp(R) como

sendo o fecho, na norma dos multiplicadores de Fourier, das funções polinomiais trigo-

nométricas, e concluímos este trabalho ao provar que a álgebra APp(R) é inversamente

fechada em AP (R).

Palavras-chave: Função Uniformemente Quase Periódica; Transformada de Fourier; Ál-

gebra de Banach; Álgebra Inversamente Fechada.
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Introduction

We know that periodic functions are really important in Mathematics. However, there

exist some functions that are not periodic but satisfy some special properties that make

them really similar to periodic functions, and we call them uniformly almost periodic

functions. For instance, if we consider the function f (x) := cos(2πx) + cos(2π
√

2x) we

know that cos(2πx) and cos(2π
√

2x) are periodic functions, but f will not be periodic

because f (x) = 2 has only one solution, when x = 0, as we will see in Example 2.1.6.

We will prove in this work that periodic functions are uniformly almost periodic and

that the sum of two uniformly almost periodic functions is uniformly almost periodic,

consequently f is a uniformly almost periodic function. We can find the behaviour of

these functions in our lives, for example, if we consider Earth’s revolution around the Sun

at the same time that we consider Moon’s revolution around the Earth as we can see in

the following picture.

Figure 1.1: Earth’s and Moon’s Revolution

Our main goal is to understand Theorem 5.8.2. With that in mind, we start by

analysing and study uniformly almost periodic functions, which were introduced and

studied by H. Bohr. We introduce some basic definitions and examples that are going

to help us to understand the advanced concepts. After that we see some properties of

uniformly almost periodic functions to help us understand why these functions are so

1



CHAPTER 1. INTRODUCTION

important. Following that, we study the behaviour of a sequence of uniformly almost

periodic functions, its derivatives and integrals.

Afterwards, in Chapter 3, we examine a new class of so-called normal functions,

introduced by S. Bochner. We start by stating its definition and we will be able to

establish a relation between those functions and uniformly almost periodic functions,

that is, the definitions of uniformly almost periodic and normal functions, given by Bohr

and Bochner respectively, are indeed equivalent. Then we analyse the mean value of a

uniformly almost periodic function and some consequences about it, which will be really

important for the main result about uniformly almost periodic functions. Following

that we study Fourier series for uniformly almost periodic functions and we are going

to observe similarities with the original definition of Fourier series of periodic functions.

We finish Chapter 3 by proving that a function is uniformly almost periodic if and only

if it belongs to AP (R), that is, the smallest closed subset of L∞(R) that contains the set of

trigonometric polynomial functions.

In Chapter 4, we start by defining some spaces and functions that are really important,

the Lp(R) spaces and step functions respectively, which will have a crucial role in this

work. Succeeding that we define the Fourier transform in L1(R) and we establish some

properties that will help us to understand advanced concepts. Then we examine the

definition of convolution and its applications in the Fourier transform. We finish Chapter

4 by generalizing the concept of the Fourier transform to L2(R), using the fact that, as we

will see in this work, the space L1(R)∩L2(R) is dense in L2(R).

In Chapter 5, we start by giving some basic definitions regarding Functional Analysis

and, after that, we prove a theorem regarding Banach algebras that is going to aid us

during the remain part of the work. Following that we recall the definition of a max-

imal ideal and, with that being done, we establish some properties of maximal ideals.

Moreover, we prove results that relate maximal ideals and invertible elements of a unital

commutative Banach algebra. Then we study the multiplicative linear functionals of a

unital commutative Banach algebra which, taking into account Gelfand’s theory, are re-

lated in a special way to each other as we will see in Theorem 5.3.5. Then we define the

concept of an algebra embedded densely into another algebra and then we establish two

important theorems regarding extensions of multiplicative linear functionals. Following

that, we define the concept of a character in the unit circle and we recall the definition

of the Banach algebra l1(R). With that being done, we will prove that, in fact, l1(R) is

homeomorphic to the space of all characters of the unit circle.

Following that, we will be able to prove that the set AP (R) is a unital commutative

C∗−subalgebra of L∞(R). Afterwards, using the things learned from the Fourier transform

in the previous chapter, we define the set Mp(R) as the set of every Fourier multiplier

in Lp(R), which are certain functions that satisfy some properties, and then we will be

able to give the definition of the set APp(R) as the closure of the set of trigonometric

polynomial functions in the norm of Mp(R). Following that, we will be able to prove

that the algebra APp(R) is embedded densely into the algebra AP (R), for each 1 < p <∞.
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Then we define the Banach algebra APW (R) and we prove that APW (R) is embedded

densely into APp(R) and also embedded densely into AP (R). Moreover, we see that, in

fact, APW (R) is isometrically isomorphic to l1(R) and also that the Gelfand space of

APW (R) is homeomorphic to the Gelfand space of AP (R). After proving that the Gelfand

space of APp(R) is homeomorphic to the Gelfand space of AP (R) and after characterizing

the invertible elements of APp(R), we finish this work by proving that the set APp(R) is

inverse-closed in AP (R).
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2

Uniformly Almost Periodic Functions

In this chapter we will start by presenting some simple definitions that will guide us to

define a uniformly almost periodic function. Following that, we will establish several

important properties of these functions.

2.1 First Definitions

In this section, we will always consider K = R or K = C.

Definition 2.1.1. Let X be a subset of R, that is, X ⊆ R. We say that X is relatively dense

in R if and only if there exists l > 0 such that for any open interval ]a,b[ with length l,

X ∩ ]a,b[ , ∅.

If we analyse the previous definition we can conclude that if a set A is dense in R, then

A is relatively dense in R and if a set A is relatively dense in R and A ⊆ X, then X is also

relatively dense in R.

Example 2.1.2. We know that Q is dense in R and therefore Q is relatively dense in R. If

we consider the set of integer numbers, Z, we know that Z is not dense in R. However,

it is indeed relatively dense because if we choose l = 2 > 0 and choose any interval with

length l = 2, for example ]a,a+ 2[, we can guarantee that

Z ∩ ]a,a+ 2[ , ∅,

and therefore Z is relatively dense in R.

On the other hand, the set of natural numbers, N, it is not relatively dense inR because

for every x > 0, there is an open interval ]− x,0[, with length x, such that

N ∩ ]− x,0[ = ∅,

which means that, by definition, N is not a relatively dense set in R.

4



2.1. FIRST DEFINITIONS

Definition 2.1.3. Let f : R→K be a function. We say that τ ∈ R is a translation number

of f belonging to ϵ ≥ 0 if and only if

sup
x∈R
|f (x+ τ)− f (x)| ≤ ϵ.

From now on we are going to denote the set of all translation numbers of a function

f belonging to ϵ ≥ 0 by Eϵ,f . With this definition we can deduce some properties of

translation numbers.

1. If τ ∈ Eϵ,f then for all δ ≥ ϵ, τ ∈ Eδ,f .

2. If τ ∈ Eϵ,f then −τ ∈ Eϵ,f .

3. If τ1 ∈ Eϵ1,f and τ2 ∈ Eϵ2,f then τ1 ± τ2 ∈ Eϵ1+ϵ2,f .

Remark: It is important to observe that given ϵ > 0, if the set Eϵ,f is relatively dense in

R, then for each a,x ∈ R there exists τx ∈ [−x+a,−x+a+lϵ] ∩ Eϵ,f such that x+τx ∈ [a,a+lϵ],

where lϵ > 0 verifies the condition for which any interval with length lϵ intersects Eϵ,f .

We are going to use this observation in some proofs established in this work.

Now, we have everything that we need in order to define a uniformly almost periodic

function.

Definition 2.1.4. Let f : R→ K be a continuous function. We say that f is uniformly

almost periodic (u.a.p.) if and only if the set Eϵ,f is relatively dense for every ϵ > 0. In this

work we will denote the set of all uniformly almost periodic functions by U (R).

As our intuition would tell us, in the following result we see that every periodic

function is also a u.a.p. function.

Lemma 2.1.5. If f is a continuous periodic function, then f is u.a.p.

Proof. If f is a continuous periodic function with period T > 0, then for each ϵ > 0 the set

Eϵ,f contains all numbers of the form nT , with n ∈ Z. Therefore for any ϵ > 0 the set Eϵ,f
is relatively dense in R, and we conclude that f is u.a.p. as we wanted to prove.

The following example show us the behaviour of a u.a.p. function that is not periodic.

Example 2.1.6. If we consider the function f (x) = cos(2πx) + cos(2π
√

2x) for every x ∈ R,
f is not a periodic function because the only solution for f (x) = 2 is x = 0. In fact, if

we have cos(2πx) = 1 and cos(2π
√

2x) = 1, then 2πx = 2πk1 and 2π
√

2x = 2πk2, with

k1, k2 ∈ Z. Since k1 and k2 are integer numbers, it follows that the equation k1 = k2√
2

is only

satisfied if k1 = k2 = 0, therefore f is not a periodic function. However f is a uniformly

almost periodic function because we will prove in Theorem 2.3.5 that the sum of two

u.a.p. functions is a u.a.p. function.

5



CHAPTER 2. UNIFORMLY ALMOST PERIODIC FUNCTIONS

Figure 2.1: f (x) = cos(2πx) + cos(2π
√

2x), x ∈ [−5,5].

Definition 2.1.7. Given a function f : R→K and a ∈ R, we define the translation function

Taf by

(Taf )(x) := f (x+ a),

for every x ∈ R.

We finish this section by checking that the translation function is always u.a.p. sup-

posing that our given function is u.a.p.

Lemma 2.1.8. If f is a u.a.p. function, then Taf is also u.a.p. for every a ∈ R.

Proof. Let a,τ ∈ R and f be a u.a.p. function. Then

sup
y∈R
|f (y + τ)− f (y)| = sup

x∈R
|f (x+ a+ τ)− f (x+ a)| = sup

x∈R
|Taf (x+ τ)− Taf (x)|,

consequently, τ is a translation number of f if and only if τ is a translation number of Taf

for every a ∈ R. Therefore the set Eϵ,Taf is relatively dense in R for each a ∈ R and ϵ > 0,

and we conclude that Taf is u.a.p. as we wanted to prove.

2.2 Boundedness, Uniform Continuity, and Inverse Closedness

In this sections we will analyse some topological properties of u.a.p. functions. Regarding

boundedness, we have the following result.

Theorem 2.2.1 ([4, Chapter 1, Section 1, Theorem 4]). If a function f : R→K is uniformly
almost periodic, then f is bounded.

Proof. Since f is a uniformly almost periodic function, it follows that Eϵ,f is relatively

dense in R for every ϵ > 0. Let ϵ = 1. In these conditions E1,f is relatively dense and

6



2.2. BOUNDEDNESS, UNIFORM CONTINUITY, AND INVERSE CLOSEDNESS

therefore there exists a positive number l1 such that for any open interval ]a,b[ with

length l1,

E1,f ∩ ]a,b[ , ∅.

Consider the interval L = [0, l1], with length l1, and let

max
x∈L
|f (x)| = M.

For each x ∈ R, we can find a number τx ∈ E1,f such that x + τx ∈ L. In fact if y ∈ R, then

there is τy ∈ [−y,−y+ l1]∩E1,f that verifies 0 ≤ y+τy ≤ l1 and thus y+τy ∈ L. Consequently

|f (x+ τx)| ≤ M.

On the other hand, since τx ∈ E1,f , we can say, by definition of translation number of f ,

that

|f (x+ τx)− f (x)| ≤ 1.

Adding both of these inequalities we conclude that for every x ∈ R,

|f (x)| = |f (x) + f (x+ τx)− f (x+ τx)| ≤ |f (x+ τx)|+ |f (x+ τx)− f (x)| ≤ M + 1.

Since x is an arbitrary real number and M does not depend on x, we have proved the

theorem.

Now we will see that every u.a.p. function is, in fact, uniformly continuous.

Theorem 2.2.2 ([4, Chapter 1, Section 1, Theorem 5]). If a function f : R→K is uniformly
almost periodic, then f is uniformly continuous.

Proof. Let ϵ > 0. Since f is a uniformly almost periodic function, the set E ϵ
3 ,f

is relatively

dense. Therefore there exists l ϵ
3
> 0 such that for any open interval ]a,b[ with length l ϵ

3
,

E ϵ
3 ,f
∩ ]a,b[ , ∅.

Since f is continuous, for each x1 ∈ ]0, l ϵ
3

+ 1[ there exists δ ∈ ]0,1[ such that for any

x2 ∈]0, l ϵ3 + 1[,

|x1 − x2| < δ⇒ |f (x1)− f (x2)| < ϵ
3
.

Let x,y be two real numbers satisfying |x − y| < δ. In these conditions there is a number

τ ∈ E ϵ
3 ,f
∩ ]−min{x,y},−min{x,y}+ l ϵ

3
[ such that x+τ ∈]0, l ϵ

3
+1[ and y+τ ∈]0, l ϵ

3
+1[. Thus

the inequality

|f (x+ τ)− f (y + τ)| < ϵ
3

is indeed true. On the other hand, since τ ∈ E ϵ
3 ,f

, for any x ∈ R we have

|f (x+ τ)− f (x)| ≤ ϵ
3
.

7



CHAPTER 2. UNIFORMLY ALMOST PERIODIC FUNCTIONS

Consequently, it follows that

|f (x)− f (y)| = |f (x)− f (y) + f (x+ τ)− f (x+ τ) + f (y + τ)− f (y + τ)|

≤ |f (x+ τ)− f (x)|+ |f (y + τ)− f (y)|+ |f (x+ τ)− f (y + τ)|

<
ϵ
3

+
ϵ
3

+
ϵ
3

= ϵ,

and we can conclude that f is uniformly continuous.

The following result is an immediate consequence of the fact that every u.a.p. function

is uniformly continuous.

Corollary 2.2.3 ([4, Chapter 1, Section 1, Corollary 5]). Let f be a u.a.p. function and let
ϵ > 0. Then there exists δϵ > 0 such that

]− δϵ,δϵ[ ⊆ Eϵ,f .

Proof. Let f be a u.a.p. function and ϵ > 0. Using Theorem 2.2.2 we can assure that f is

uniformly continuous and therefore there exists a δϵ > 0 such that for every x,y ∈ R,

|x − y| < δϵ ⇒ |f (x)− f (y)| < ϵ.

Let τ ∈]− δϵ,δϵ[ and consider x ∈ R. It follows that

|x+ τ − x| = |τ | < δϵ ⇒ |f (x+ τ)− f (x)| < ϵ,

and thus we have that

sup
x∈R
|f (x+ τ)− f (x)| ≤ ϵ.

That is, τ ∈ Eϵ,f and we can conclude that ]− δϵ,δϵ[ ⊆ Eϵ,f .

We finish this section by verifying the inverse closedness of u.a.p. functions, that is, if

f ∈U (R) and if the function 1
f is well defined, then 1

f ∈U (R).

Theorem 2.2.4 ([4, Chapter 1, Section 1, Theorem 7]). If f is a uniformly almost periodic
function and if

inf
x∈R
|f (x)| =m > 0,

then the function 1
f is also uniformly almost periodic.

Proof. Let ϵ > 0 and let τ ∈ Eϵ,f . In these conditions

sup
x∈R
|f (x+ τ)− f (x)| ≤ ϵ.

Since

inf
x∈R
|f (x)| =m,

it follows that

∀x ∈ R,
∣∣∣∣∣ 1
f (x)

∣∣∣∣∣ ≤ 1
m
,

8



2.3. ALGEBRAIC PROPERTIES OF U.A.P. FUNCTIONS

and therefore ∣∣∣∣∣ 1
f (x+ τ)

− 1
f (x)

∣∣∣∣∣ =
∣∣∣∣∣f (x+ τ)− f (x)
f (x+ τ) · f (x)

∣∣∣∣∣ ≤ ϵ

m2 .

Under these circumstances the set Eϵ,f is contained in the set E ϵ
m2 ,

1
f

and, consequently, the

latter set is relatively dense because the former one is relatively dense by our hypothesis.

2.3 Algebraic Properties of u.a.p. Functions

We start this section by seeing simple, but useful, algebraic properties of u.a.p. functions.

Theorem 2.3.1 ([4, Chapter 1, Section 1, Theorem 6]). Let λ ∈ C and let f be a u.a.p.
function. Then the functions λf , f and f 2 are also u.a.p. functions.

Proof. Since f is a u.a.p. function, by Theorem 2.2.1, f is bounded and therefore there is

a number M > 0 such that

sup
x∈R
|f (x)| ≤M.

Let ϵ > 0 and let τ ∈ Eϵ,f . In these conditions we know that

sup
x∈R
|f (x+ τ)− f (x)| ≤ ϵ.

Using this condition and the fact that f is bounded we obtain

sup
x∈R
|f (x+ τ)− f (x)| = sup

x∈R
|f (x+ τ)− f (x)| ≤ ϵ,

sup
x∈R
|λf (x+ τ)−λf (x)| = |λ| · sup

x∈R
|f (x+ τ)− f (x)| ≤ |λ| · ϵ =: ϵ1,

sup
x∈R
|f 2(x+ τ)− f 2(x)| = sup

x∈R
|f (x+ τ)− f (x)| · |f (x+ τ) + f (x)|

≤ ϵ · (M +M) = 2Mϵ =: ϵ2.

Therefore we can conclude that the set Eϵ,f is contained in the sets Eϵ,f ,Eϵ1,λf and Eϵ2,f 2 ,

that is, these 3 sets are relatively dense in R. Thus f ,λf and f 2 are uniformly almost

periodic.

Given x ∈K and A ⊆K, as usual, we define the distance from x to A as

d(x,A) := inf {|x − y| : y ∈ A}.

Despite the fact that the previous theorem was not hard to prove, that does not happen

if one try to prove that the sum of two u.a.p. functions is u.a.p. From now on, until

Theorem 2.3.4, we are going to establish some lemmas that will aid us to prove that fact.

9



CHAPTER 2. UNIFORMLY ALMOST PERIODIC FUNCTIONS

Lemma 2.3.2 ([4, Chapter 1, Section 1, Lemma 9]). For every ϵ1,ϵ2 > 0, with ϵ2 > ϵ1, there
exists a δϵ1,ϵ2

> 0 such that Eϵ2,f contains any number τ that satisfies

d(τ,Eϵ1,f ) < δϵ1,ϵ2
.

Proof. Since ϵ2 > ϵ1, it follows that

ϵ3 := ϵ2 − ϵ1 > 0,

and applying Corollary 2.2.3, we can see that there exists a δϵ3
> 0 such that

]− δϵ3
,δϵ3

[ ⊆ Eϵ3,f .

Let τ1 ∈ Eϵ1,f and consider τ3 ∈ Eϵ3,f . Using the property of the sum of translation num-

bers, we have that

τ2 := τ1 + τ3 ∈ Eϵ1+ϵ3,f = Eϵ2,f ,

and since ]− δϵ3
,δϵ3

[ is contained in Eϵ3,f , it follows that if a ∈ R satisfies d(a,Eϵ1,f ) < δϵ3
,

then a = b+c where b ∈ Eϵ1,f and c ∈]−δϵ3
,δϵ3

[⊆ Eϵ3,f and thus a ∈ Eϵ2,f . Therefore we can

conclude that Eϵ2,f contains any number τ that verifies d(τ,Eϵ1,f ) < δϵ3
as we wanted to

prove.

Lemma 2.3.3 ([4, Chapter 1, Section 1, Lemma 10]). Let ϵ,δ > 0 and f1, f2 be uniformly
almost periodic functions. Then the set

{τ ∈ Eϵ,f1 : d(τ,Eϵ,f2) < δ}

is relatively dense.

Proof. Since f1 and f2 are u.a.p. functions, we can assure that the sets E ϵ
2 ,f1

and E ϵ
2 ,f2

are relatively dense, therefore there exist l1, l2 > 0 such that any interval with length l1
intersects E ϵ

2 ,f1
and every interval with length l2 intersects E ϵ

2 ,f2
. Then there is k ∈ N that

satisfies

l := k · δ >max {l1, l2}.

For every n ∈ Z, consider the intervals [(n− 1)l,nl]. It is obvious that these intervals have

length l and ⋃
n∈Z

[(n− 1)l,nl] = R.

Since l > max {l1, l2}, it follows that for any n ∈ Z, there exist τ (n)
1 , τ

(n)
2 ∈ ](n− 1)l,nl[ such

that

τ
(n)
1 ∈ E ϵ

2 ,f1
∧ τ (n)

2 ∈ E ϵ
2 ,f2
,

and consequently

−l < τ (n)
1 − τ

(n)
2 < l.

Let

Ii = [(i − 1)δ, iδ[,

10



2.3. ALGEBRAIC PROPERTIES OF U.A.P. FUNCTIONS

for any i ∈ {−k+ 1, . . . , k}. In these conditions for every n ∈ Z, there is i ∈ {−k+ 1, . . . , k} such

that

τ
(n)
1 − τ

(n)
2 ∈ Ii .

It is not hard to see that there exists n0 ∈ N and there is i ∈ {−k + 1, . . . , k} such that for any

n ∈ Z, there corresponds an integer number n1 ∈ [−n0,n0] satisfying

τ
(n)
1 − τ

(n)
2 ∈ Ii ∧ τ

(n1)
1 − τ (n1)

2 ∈ Ii .

That is, τ (n)
1 − τ

(n)
2 and τ (n1)

1 − τ (n1)
2 belong to the same interval Ii , hence there is λ ∈ ]−1,1[

verifying

τ
(n)
1 − τ

(n)
2 = τ (n1)

1 − τ (n1)
2 +λ · δ ⇔ τ

(n)
1 − τ

(n1)
1 = τ (n)

2 − τ
(n1)
2 +λ · δ.

Since τ (n)
1 , τ

(n1)
1 ∈ E ϵ

2 ,f1
and τ (n)

2 , τ
(n1)
2 ∈ E ϵ

2 ,f2
, applying proprieties of translation numbers,

we get that τ (n)
1 − τ

(n1)
1 ∈ Eϵ,f1 and τ (n)

2 − τ
(n1)
2 ∈ Eϵ,f2 , consequently we have that

|(τ (n)
1 − τ

(n1)
1 )− (τ (n)

2 − τ
(n1)
2 )| = |λδ| < δ,

and thus we can guarantee that

d
(
τ

(n)
1 − τ

(n1)
1 ,Eϵ,f2

)
< δ.

We can see that for every n ∈ Z, τ (n)
1 ∈](n− 1)l,nl[ and τ (n+1)

1 ∈]nl, (n+ 1)l[ which implies

that

|τ (n)
1 − τ

(n+1)
1 | < (n+ 1)l − (n− 1)l = 2l,

and due to the fact that n1, (n + 1)1 ∈ [−n0,n0] for every n ∈ Z, we can also see that

τ
(n)1
1 , τ

(n+1)1
1 ∈](−n0 − 1)l,n0l[ which implies that

|τ (n+1)1
1 − τ (n)1

1 | < n0l − (−n0 − 1)l = 2n0l + l.

Then for each n ∈ Z,

|(τ (n)
1 − τ

(n1)
1 )− (τ (n+1)

1 − τ (n+1)1
1 )| = |(τ (n)

1 − τ
(n+1)
1 ) + (τ (n+1)1

1 − τ (n)1
1 )|

≤ |τ (n)
1 − τ

(n+1)
1 |+ |τ (n+1)1

1 − τ (n)1
1 |

< 2l + (2ln0 + l) = (2n0 + 3)l =: l3,

hence we can assure that the set W := {τ (n)
1 − τ

(n)1
1 : n ∈ Z} is relatively dense, therefore we

conclude that

{τ ∈ Eϵ,f1 : d(τ,Eϵ,f2) < δ}

is also relatively dense in R because it contains the set W.

Theorem 2.3.4 ([4, Chapter 1, Section 1, Theorem 11]). If ϵ > 0 and if f1 and f2 are uni-
formly almost periodic functions, then the set Eϵ,f1 ∩Eϵ,f2 is relatively dense.

11
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Proof. Let ϵ > ϵ1 > 0. Applying Lemma 2.3.2 there exists a δϵ,ϵ1
> 0 such that Eϵ,f1 contains

any number τ that satisfies

d(τ,Eϵ1,f1) < δϵ,ϵ1
.

Since f1 and f2 are u.a.p. functions, using Lemma 2.3.3 we can assure that the set

{τ ∈ Eϵ1,f2 : d(τ,Eϵ1,f1) < δϵ,ϵ1
},

is relatively dense. Taking into account that ϵ1 < ϵ and considering the previous state-

ments, it follows that

{τ ∈ Eϵ1,f2 : d(τ,Eϵ1,f1) < δϵ,ϵ1
} ⊆ {τ ∈ Eϵ1,f2 : τ ∈ Eϵ,f1} = Eϵ1,f2 ∩Eϵ,f1 ,

and due to the fact that the former set is relatively dense, Eϵ,f1 ∩ Eϵ1,f2 is also relatively

dense. Since ϵ1 < ϵ we have that Eϵ1,f2 ⊆ Eϵ,f2 and we conclude that Eϵ,f1∩Eϵ,f2 is relatively

dense.

With that being said, we are now in conditions to prove that the sum of two u.a.p.

functions is a u.a.p. function.

Theorem 2.3.5 ([4, Chapter 1, Section 1, Theorem 12]). If f1 and f2 are uniformly almost
periodic functions, then f1 + f2 is uniformly almost periodic function as well.

Proof. Let ϵ > 0 and let τ ∈ E ϵ
2 ,f1
∩E ϵ

2 ,f2
. Then τ ∈ E ϵ

2 ,f1
and τ ∈ E ϵ

2 ,f2
, therefore it follows

that

sup
x∈R
|f1(x+ τ)− f1(x)| ≤ ϵ

2
, sup

x∈R
|f2(x+ τ)− f2(x)| ≤ ϵ

2
.

In these conditions we can guarantee that

sup
x∈R
|(f1 + f2)(x+ τ)− (f1 + f2)(x)| = sup

x∈R
|f1(x+ τ) + f2(x+ τ)− f1(x)− f2(x)|

≤ sup
x∈R
|f1(x+ τ)− f1(x)|+ sup

x∈R
|f2(x+ τ)− f2(x)|

≤ ϵ
2

+
ϵ
2

= ϵ.

We have proved that if τ ∈ E ϵ
2 ,f1
∩E ϵ

2 ,f2
then τ ∈ Eϵ,f1+f2 , that is

E ϵ
2 ,f1
∩E ϵ

2 ,f2
⊆ Eϵ,f1+f2 . (2.1)

Applying Theorem 2.3.4 we know that E ϵ
2 ,f1
∩E ϵ

2 ,f2
is relatively dense in R and, by (2.1),

we conclude that Eϵ,f1+f2 is relatively dense in R for each ϵ > 0, that is, f1+f2 is a uniformly

almost periodic function.

Applying the previous results of this section regarding algebraic properties of u.a.p.

functions, we have that the product of two u.a.p. functions is also a u.a.p. function.

Theorem 2.3.6 ([4, Chapter 1, Section 1, Theorem 13]). If f1 and f2 are uniformly almost
periodic functions then f1 · f2 is also uniformly almost periodic.

12
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Proof. Firstly let us observe that for any x ∈ R,

f1(x) · f2(x) =
1
4

(f1(x) + f2(x))2 − 1
4

(f1(x)− f2(x))2.

Since f1 and f2 are u.a.p. functions, applying Theorems 2.3.1 and 2.3.5, we conclude that

f1 · f2 is u.a.p. as we wanted to prove.

We finish this section by seeing that the quotient of two u.a.p. functions is also a u.a.p.

function, as a consequence of the previous theorem and the inverse closedness of u.a.p.

functions.

Corollary 2.3.7 ([4, Chapter 1, Section 1, Corollary 13]). If f1 and f2 are uniformly almost
periodic functions and

inf
x∈R
|f2(x)| > 0,

then f1
f2

is uniformly almost periodic.

Proof. We know that f1f2 = f1 · 1
f2

. Applying Theorem 2.2.4, we conclude that 1
f2

is uniformly

almost periodic and thus, by using Theorem 2.3.6, we deduce that f1 · 1
f2

= f1
f2

is uniformly

almost periodic as we wanted.

2.4 Limits of Sequences of u.a.p. Functions

In this section we will analyse the behaviour of a sequence of u.a.p. functions that con-

verge uniformly to a certain function.

Definition 2.4.1. Let (fn)n∈N be a sequence of functions such that fn : R → K for each

n ∈ N. We say that (fn)n∈N is uniformly convergent to a function f : R→ K if and only if

for each ϵ > 0 there exists p ∈ N such that for any x ∈ R if n > p, then

|fn(x)− f (x)| < ϵ.

Theorem 2.4.2 ([4, Chapter 1, Section 1, Theorem 8]). Let (fn)n∈N be a sequence of u.a.p
functions such that (fn)n∈N converges uniformly in R to a function f . Then f is also a u.a.p.
function.

Proof. Let ϵ > 0. Since (fn) converges uniformly to f , there exists p ∈ N such that for every

x ∈ R,

|f (x)− fp(x)| < ϵ
3
.

Let τ ∈ E ϵ
3 ,fp

and x ∈ R. Then

sup
x∈R
|fp(x+ τ)− fp(x)| ≤ ϵ

3
,

therefore we have

|f (x+ τ)− f (x)| = |f (x+ τ)− f (x) + fp(x+ τ)− fp(x+ τ) + fp(x)− fp(x)|

13
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≤ |f (x+ τ)− fp(x+ τ)|+ |fp(x)− f (x)|+ |fp(x+ τ)− fp(x)|

<
ϵ
3

+
ϵ
3

+
ϵ
3

= ϵ,

and thus τ ∈ Eϵ,f , that is, E ϵ
3 ,fp
⊆ Eϵ,f . Since the former set is relatively dense, it follows

that Eϵ,f is also relatively dense, and therefore f is uniformly almost periodic.

We finish this section by verifying that the sum of any uniformly convergent trigono-

metric series is also a u.a.p. function.

Corollary 2.4.3 ([4, Chapter 1, Section 1, Corollary 12]). Let cn ∈ C and λn ∈ R for every

n ∈ N. If the series
∞∑
n=1

cne
iλnx is uniformly convergent, then its sum is u.a.p.

Proof. We know that cneiλnx is a purely periodic function and therefore, applying Lemma

2.1.5, is a u.a.p. function, thus if we consider a sequence fn(x) = cne
iλnx, fn is a u.a.p.

function for every n ∈ N and using Theorem 2.3.5 we get that
n∑
k=1

fk is also uniformly

almost periodic. Since the series is uniformly convergent, we just need to apply Theorem

2.4.2 and the proof is done.

2.5 Derivatives and Integrals of u.a.p. Functions

We start this section by seeing that if a real function is u.a.p. and if its derivative is

uniformly continuous in R, then it is also a u.a.p. function.

Theorem 2.5.1 ([4, Chapter 1, Section 1, Theorem 14]). Let f be a real u.a.p. function. If
the derivative of f , f ′, is uniformly continuous in R, then it is also uniformly almost periodic.

Proof. Let ϵ > 0 and let (hn)n∈N be a sequence of real numbers such that hn , 0 for every

n ∈ N, and

lim
n→∞

hn = 0.

Since f is differentiable, applying Lagrange’s mean value theorem, it follows that for

every n ∈ N and x ∈ R, there exists λn,x ∈ ]0,1[ such that

(Tλn,xhnf
′)(x) =

(Thnf )(x)− f (x)
hn

.

Due to the fact that f and Taf are u.a.p. functions for every a ∈ R, applying Theorem 2.3.1

and Theorem 2.3.5 we have that Tλn,xhnf
′ is u.a.p. for every n ∈ N. Since f ′ is uniformly

continuous in R, there exists δϵ > 0 such that for each x,y ∈ R,

|x − y| < δϵ⇒ |f ′(x)− f ′(y)| < ϵ. (2.2)

Since λn,x ∈]0,1[ for each n ∈ N and for any x ∈ R, it follows that for every x ∈ R,

lim
n→∞

|x+λn,xhn − x| ≤ lim
n→∞

|hn| = 0.

14
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Consequently there exists p ∈ N, which does not depend on x, such that if n > p, then

|x+λn,xhn − x| ≤ |hn| < δϵ.

Therefore if n > p, applying the previous inequality to the condition (2.2), we have that

|f ′(x+λn,xhn)− f ′(x)| = |(Tλn,xhnf
′)(x)− f ′(x)| < ϵ

for each x ∈ R. Consequently (Tλn,xhnf
′)n∈N is a sequence of u.a.p. functions that converge

uniformly in R to f ′ and we conclude, by Theorem 2.4.2, that f ′ is uniformly almost

periodic.

We finish this chapter by checking that any bounded indefinite integral of a u.a.p.

function is also a u.a.p. function.

Theorem 2.5.2 ([4, Chapter 1, Section 1, Theorem 15]). If an indefinite integral of a u.a.p.
function f is bounded, then it is a uniformly almost periodic function.

Proof. Let us consider, without loss of generality, that f is a real function and let a ∈ R.

Let us assume that

g(x) =
∫ x

a
f (y) dy

is bounded, that is, there are k1, k2 ∈ R such that

k1 = inf
x∈R

g(x), k2 = sup
x∈R

g(x).

Let η > 0. In these conditions we can assure that there are x1,x2 ∈ R such that

g(x1) < k1 + η, g(x2) > k2 − η.

Let ϵ1 > 0, τ1 ∈ Eϵ1,f and d = |x2 − x1|. In these circumstances it follows that∣∣∣∣∣∣
∫ x2+τ1

x1+τ1

f (x) dx −
∫ x2

x1

f (x) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ x2

x1

[f (x+ τ1)− f (x)] dx

∣∣∣∣∣∣ ≤ ϵ1d,

that is

|g(x2 + τ1) + g(x1)− g(x1 + τ1)− g(x2)| ≤ ϵ1d.

Therefore we have

g(x1 + τ1) ≤ g(x2 + τ1)− g(x2) + g(x1) + ϵ1d, (2.3)

and since

k2 = sup
x∈R

g(x), g(x1) < k1 + η, g(x2) > k2 − η,

we have that

g(x2 + τ1) ≤ k2, g(x2)− g(x1) > k2 − k1 − 2η, (2.4)

and consequently, using the inequalities given in (2.3) and (2.4), we have

g(x1 + τ1) < k1 + 2η + ϵ1d. (2.5)

15
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Let ϵ2 > 0 which will be defined later on and let τ2 ∈ Eϵ2,f . Repeating the same argument

and justifications as we did previously and observing that τ1 + τ2 ∈ Eϵ1+ϵ2,f , we conclude

that

g(x1 + τ1 + τ2) < k1 + 2η + (ϵ1 + ϵ2)d. (2.6)

Using the fact that Eϵ1,f is relatively dense, there is lϵ1
> 0 such that any interval with

length lϵ1
intersects Eϵ1,f . Given x ∈ R, we can choose τ3 ∈ Eϵ1,f satisfying the inequalities

x < x1 + τ3, x1 + τ3 < x+ lϵ1

thus we have∫ x+τ2

x
f (y) dy =

∫ x1+τ2+τ3

x1+τ3

f (y) dy +
∫ x1+τ3

x
[f (y)− f (y + τ2)] dy. (2.7)

Taking into account that g(x) ≥ k1 for each x ∈ R, it follows that

−g(x1 + τ3) ≤ −k1, g(x1 + τ2 + τ3) ≥ k1

and applying inequality (2.6) with τ1 = τ3 and the fact that

−g(x1 + τ3) ≤ −k1,

we get ∣∣∣∣∣∣
∫ x1+τ2+τ3

x1+τ3

f (x) dx

∣∣∣∣∣∣ = |g(x1 + τ2 + τ3)− g(x1 + τ3)| < 2η + (ϵ1 + ϵ2)d. (2.8)

Since

x < x1 + τ3, x1 + τ3 < x+ lϵ1
,

we see that ∣∣∣∣∣ ∫ x1+τ3

x
[f (y)− f (y + τ2)] dy

∣∣∣∣∣ < ∫ x+lϵ1

x
|f (y + τ2)− f (y)| dy ≤ ϵ2lϵ1

. (2.9)

Consequently using equation (2.7) and inequalities (2.8) and (2.9), we have∣∣∣∣∣ ∫ x+τ2

x
f (y) dy

∣∣∣∣∣ < 2η + (ϵ1 + ϵ2)d + ϵ2lϵ1
.

Given ϵ > 0, if we consider

η =
ϵ
6
, ϵ1 =

ϵ
6d
, ϵ2 = min

{
ϵ1,

ϵ
3lϵ1

}
,

we obtain that

|g(x+ τ2)− g(x)| =
∣∣∣∣∣ ∫ x+τ2

x
f (y) dy

∣∣∣∣∣ < ϵ3 +
ϵ
3

+
ϵ
3

= ϵ,

for every x ∈ R and for any τ2 ∈ Eϵ2,f , therefore we can conclude that Eϵ2,f ⊆ Eϵ,g , that is,

Eϵ,g is relatively dense as we wanted to prove.
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3

Relations Between Normal, U.A.P.

and Trigonometric Polynomial

Functions

In this chapter we will start by introducing the class of normal functions and, in the

same section, we are going to prove that this new class coincides with the set U (R). After

defining the mean value of a u.a.p. function, we will verify that, in fact, the mean value

of a u.a.p. function always exists. Following that, we are going to give an alternative

definition of the mean value and we will present some properties of it. Afterwards, we

will not only construct the Fourier series for a u.a.p. function, by defining its Fourier

coefficients as the mean value of product between that function and the function e−λ,

where eλ(x) := eiλx for each x ∈ R, but also establish Bessel’s inequality. Moreover, we will

study some properties of the Fourier series regarding sequences of u.a.p. functions and

also the uniqueness of the Fourier series for these functions. We finish this chapter by

verifying that the closure, on L∞(R), of the set of trigonometric polynomial functions, is

equal to the set U (R).

3.1 Normal Functions

We start this section by recalling a well known definition from Functional Analysis.

Definition 3.1.1. Let (fn)n∈N be a sequence of functions such that fn : R → K for each

n ∈ N. We say that (fn)N is uniformly Cauchy if and only if for each ϵ > 0 there exists p ∈ N
such that for any x ∈ R if m,n > p, then

|fn(x)− fm(x)| < ϵ.

Definition 3.1.2. Let f : R → K be a continuous function. We say that f is normal if

and only if for any sequence (hn)n∈N of real numbers, there exists a subsequence (hnk )k∈N
such that (Thnk f )k∈N is a uniformly convergent sequence of functions. In this work we will

denote the set of all normal functions by N (R).
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POLYNOMIAL FUNCTIONS

In order to understand the relation between u.a.p. functions and normal functions,

we will need the following result.

Theorem 3.1.3 ([4, Chapter 1, Section 2, Lemma 2]). Let f be a u.a.p. function and (hn)n∈N
a sequence of real numbers. Then for any ϵ > 0 there corresponds a subsequence (hnk )k∈N of
(hn)n∈N such that

sup
x∈R
|f (x+ hni )− f (x+ hnj )| < ϵ,

for any i, j ∈ N.

Proof. Let ϵ > 0. Taking into account that f is a u.a.p. function, there exists l ϵ
4
> 0 such

that any interval with length l ϵ
4

intersects E ϵ
4 ,f
. For each n ∈ N we can say that

hn = τn + rn,

where τn ∈ E ϵ
4 ,f

and rn is a real number satisfying the inequalities 0 ≤ rn ≤ l ϵ4 . Let r be

the limit of some convergent subsequence of (rn)n∈N, which indeed exists because every

bounded sequence admits a convergent subsequence, and consider δ > 0 such that for

each x1,x2 ∈ R,
|x2 − x1| < 2δ ⇒ |f (x2)− f (x1)| < ϵ

3
.

In fact, this δ exists because, by Theorem 2.2.2, f is uniformly continuous. Consider the

subsequence (hnk )k∈N formed by every hn that verifies

r − δ < rn < r + δ.

Since τni − τnj ∈ E ϵ
2 ,f

and |rni − rnj | < 2δ for each i, j ∈ N, it follows that

sup
x∈R
|f (x+ τni − τnj + rni − rnj )− f (x+ rni − rnj )| ≤

ϵ
2
, sup

x∈R
|f (x+ rni − rnj )− f (x)| ≤ ϵ

3
<
ϵ
2
.

Consequently we have

sup
x∈R
|f (x+ hni )− f (x+ hnj )| = sup

y∈R
|f (y − hnj + hni )− f (y)|

= sup
x∈R
|f (x+ τni + rni − τnj − rnj )− f (x)|

≤ sup
x∈R
|f (x+ τni − τnj + rni − rnj )− f (x+ rni − rnj )|

+ sup
x∈R
|f (x+ rni − rnj )− f (x)| < ϵ

2
+
ϵ
2

= ϵ.

Now we shall see that a function is u.a.p. if and only if it is normal, that is, the set of

all u.a.p. functions coincides with the set of all normal functions. Having that in mind,

we will start to prove that the set of all uniformly almost periodic functions is contained

in the set of all normal functions.
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3.1. NORMAL FUNCTIONS

Theorem 3.1.4 ([4, Chapter 1, Section 2, Theorem 3]). If a function f is uniformly almost
periodic, then f is normal.

Proof. Let (hn)n∈N be a sequence of real numbers. Since f is a u.a.p. function, we can

apply Theorem 3.1.3 and assure that for any ϵ > 0 there exists a subsequence of (hn)n∈N,

for example (h(ϵ)
nk )k∈N, such that for any i, j ∈ N,

sup
x∈R
|f (x+ h(ϵ)

ni )− f (x+ h(ϵ)
nj )| < ϵ.

Consider ϵ = 1. In these conditions there is a subsequence (h(1)
nk )k∈N of the sequence (hn)n∈N

such that

sup
x∈R
|f (x+ h(1)

ni )− f (x+ h(1)
nj )| < 1.

Put ϵ = 1
2 . In these circumstances there exists a subsequence (h

( 1
2 )
nk )k∈N of the sequence

(h(1)
nk )k∈N, that verifies

sup
x∈R
|f (x+ h

( 1
2 )
ni )− f (x+ h

( 1
2 )
nj )| < 1

2
.

Let ϵ = 1
3 . In this case there is a subsequence (h

( 1
3 )
nk )k∈N of the sequence (h

( 1
2 )
nk )k∈N that

satisfies the inequality

sup
x∈R
|f (x+ h

( 1
3 )
ni )− f (x+ h

( 1
3 )
nj )| < 1

3
.

Repeating this reasoning, we can assure that the sequence (T
h

( 1
k )
nk

f )k∈N, verifies for every

i, j ∈ N with i < j,

sup
x∈R
|f (x+ h

( 1
i )
ni )− f (x+ h

( 1
j )
nj )| < 1

i
,

due to the fact that (h
( 1
j )
nk )k∈N is a subsequence of (h

( 1
i )
nk )k∈N. Consequently (T

h
( 1
k )
nk

f )k∈N is a

uniformly Cauchy sequence, which implies that this sequence is also uniformly conver-

gent because K is complete, and we conclude that f is normal.

We finish this section by proving that N (R) ⊆U (R), therefore, taking into account the

previous theorem, we have, in fact, the equality N (R) =U (R).

Theorem 3.1.5 ([4, Chapter 1, Section 2, Theorem 4]). If a function f is normal, then f is
uniformly almost periodic.

Proof. Suppose, by contradiction, that f is not uniformly almost periodic. Then we can

assure that there exists an ϵ > 0 such that Eϵ,f is not relatively dense. Let h1 ∈ R and

consider an interval ]a2,b2[ with length greater than 2|h1|, where the interval ]a2,b2[ does

not contain any number of Eϵ,f . Let

h2 =
a2 + b2

2
.
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In these conditions it follows that h2−h1 ∈ ]a2,b2[ and consequently h2−h1 < Eϵ,f . Consider

now an interval ]a3,b3[⊆ R with length greater than 2(|h1| + |h2|) and which does not

contain any number of Eϵ,f . Put

h3 =
a3 + b3

2
.

In these circumstances we have that h3 − h1,h3 − h2 ∈ ]a3,b3[, hence h3 − h1,h3 − h2 < Eϵ,f .

Repeating this reasoning, we can find a sequence (hn)n∈N, such that for any i, j ∈ N,

hi − hj < Eϵ,f ,

and therefore we have

sup
x∈R
|f (x+ hi)− f (x+ hj )| > ϵ.

Consequently, given a sequence (hn)n∈N, the corresponding sequence (Thnf )n∈N does not

have any subsequence which is uniformly Cauchy. Therefore, due to the fact that K is

a Banach space, the sequence (Thnf )n∈N does not have any uniformly convergent subse-

quence. But this is a contradiction because f is normal by our hypothesis, thus we have

that f is uniformly almost periodic as we wanted to prove.

3.2 Mean Value of a u.a.p. Function

We start this section by defining the mean value of a u.a.p. function.

Definition 3.2.1. Let f be a real u.a.p. function. We define the upper (respectively lower)

mean value of the function f , and we denote by Mf , (respectively Mf ) as being

Mf = limsup
y→+∞

(
1
y

∫ y

0
f (x) dx

)
, Mf = liminf

y→+∞

(
1
y

∫ y

0
f (x) dx

)
.

If Mf =Mf then we denote their common value by Mf and we say that Mf is the mean

value of the function f . On the other hand, if f is a complex function, then we only define

the mean value Mf as

lim
y→+∞

(
1
y

∫ y

0
f (x) dx

)
.

If we have a function f of n variables, then we indicate the variable with respect to

which the mean is being calculated, for example,

Mx1,f = lim
y→+∞

(
1
y

∫ y

0
f (x1, . . . ,xn) dx1

)
.

The following lemma shows that if the mean value of a u.a.p. function exists, then it

coincides precisely with the mean value of the translation function.

Lemma 3.2.2. Let a ∈ R. If f is a u.a.p. function and if Mf exists, then MTaf exists and is
equal to Mf .
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Proof. Since f is a u.a.p. function, it follows, by Theorem 2.2.1, that f is bounded and

thus there exists δ ∈ R+ such that for every x ∈ R we have |f (x)| ≤ δ, therefore we get

lim
y→+∞

∣∣∣∣∣1y
∫ a

0
f (x) dx

∣∣∣∣∣ ≤ lim
y→+∞

1
y

∫ a

0
|f (x)| dx ≤ lim

y→+∞
1
y

∫ a

0
δ dx =

aδ
+∞

= 0,

which implies that

lim
y→+∞

1
y

∫ a

0
f (x) dx = 0. (3.1)

And we also have

lim
y→+∞

∣∣∣∣∣∣1y
∫ y+a

y
f (x) dx

∣∣∣∣∣∣ ≤ lim
y→+∞

1
y

∫ y+a

y
|f (x)| dx ≤ lim

y→+∞
1
y

∫ y+a

y
δ dx =

aδ
+∞

= 0,

which implies that

lim
y→+∞

1
y

∫ y+a

y
f (x) dx = 0. (3.2)

Consequently, taking into account the equations (3.1) and (3.2), we have that

MTaf = lim
y→+∞

1
y

∫ y

0
(Taf )(x) dx

= lim
y→+∞

1
y

∫ y

0
f (x+ a) dx

= lim
y→+∞

1
y

∫ y+a

a
f (t) dt

= lim
y→+∞

1
y

∫ y+a

0
f (x) dx − lim

y→+∞
1
y

∫ a

0
f (x) dx

= lim
y→+∞

1
y

∫ y

0
f (x) dx+ lim

y→+∞
1
y

∫ y+a

y
f (x) dx − 0

= lim
y→+∞

1
y

∫ y

0
f (x) dx+ 0 =Mf .

The next result is a well-known fact from a basic analysis course (see, e.g., [16, Sec-

tion 3.2.4, Theorem 4]), which is similar to Cauchy’s criterion for sequences. For the

convenience of the reader, we give its proof below.

Lemma 3.2.3. Let f : R→K be a function. If for every ϵ > 0 there exists M > 0 such that

|f (x)− f (y)| < ϵ

for each x,y > M, then the finite limit lim
x→+∞

f (x) exists.

Proof. Suppose, without loss of generality, that f is a real function and let (xn)n∈N a

sequence of real numbers tending to +∞. Then we know that the sequence (f (xn))n∈N has

a monotone subsequence (f (xnj ))j∈N. Let ϵ = 1. Then, by our hypothesis, there is M1 > 0

such that

|f (x)− f (y)| < 1
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for each x,y > M1. Consequently,

f (M1 + 1)− 1 < f (x) < 1 + f (M1 + 1)

for every x >M1. Since

lim
j→∞

xnj = +∞,

there exists p ∈ N such that if j > p, then xnj >M1. Consider

a := min{f (M1 + 1)− 1, f (xn1
), . . . , f (xnp )}, b := max{f (M1 + 1) + 1, f (xn1

), . . . , f (xnp )}.

In these conditions we have that

a ≤ f (xnj ) ≤ b

for each j ∈ N, therefore the sequence (f (xnj ))j∈N is a bounded sequence. Taking into ac-

count that (f (xnj ))j∈N is also monotone, we get that the sequence (f (xnj ))j∈N is convergent

to some L ∈ R. Let ϵ > 0. Then there is M > 0 such that

|f (x)− f (y)| < ϵ
2

for each x,y > M. Due to the fact that

lim
n→∞

xn = +∞,

there exists N ∈ N such that if n > N, then xn >M. Since

lim
j→∞

xnj = +∞,

there is J1 ∈ N such that if j > J1, then xnj >M. On the other hand, since

lim
j→∞

f (xnj ) = L,

there exists J2 ∈ N such that if j > J2, then

|f (xnj )−L| <
ϵ
2
.

Consider K := max{J1, J2}+ 1. In these conditions if n > N, then

|f (xn)−L| ≤ |f (xn)− f (xnK )|+ |f (xnK )−L| < ϵ
2

+
ϵ
2

= ϵ,

and, consequently, we have that

lim
n→∞

f (xn) = L.

We have yet to prove that the sequence (f (xn))n∈N converge to the same finite limit,

regardless of the choice of the sequence (xn)n∈N tending to +∞. Let (un)n∈N and (vn)n∈N
be sequences that tend to +∞. Then, the sequences (f (un))n∈N and (f (vn))n∈N converge to

some L,K ∈ R, respectively. Let us define the sequence (wn)n∈N by

wn :=


un, if n is even,

vn, if n is odd.
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In these conditions we have that (wn)n∈N tends to +∞, hence the sequence (f (wn))n∈N
converges to some P ∈ R. But, by definition, the sequences (f (un))n∈N and (f (vn))n∈N are

subsequences of the sequence (f (wn))n∈N, therefore they also converge to P . Hence, by

the uniqueness of the limit in R, we have that L = K. Due to the fact that Cauchy’s limit

definition and Heine’s limit definition are equivalent, we conclude that the finite limit

lim
x→∞

f (x) exists as we wanted to prove.

As we will check, the mean value of a u.a.p. function always exists.

Theorem 3.2.4 ([4, Chapter 1, Section 3, Theorem 2]). If f is a uniformly almost periodic
function, then Mf exists.

Proof. Since

[0,nz] =
n−1⋃
k=0

[kz, (k + 1)z]

for each n ∈ N and z > 0, it follows from the properties of integrals that

1
nz

∫ nz

0
f (x) dx =

n−1∑
k=0

 1
nz

∫ (k+1)z

kz
f (x) dx


for every n ∈ N and z > 0. Let ϵ > 0. Due to the fact that f is a u.a.p. function, we know

that Eϵ,f is relatively dense and therefore there exists lϵ > 0 such that any interval with

length lϵ intersects Eϵ,f . Let n ∈ N and z > 0. Given k ∈ {0,1, . . . ,n−1}, consider the interval

]kz,kz+ lϵ[. In these circumstances the interval ]kz,kz+ lϵ[ has length lϵ and, consequently,

there exists a number τk ∈ ]kz,kz+ lϵ[ ∩ Eϵ,f . In these conditions we can assure that∫ (k+1)z

kz
f (x) dx =

∫ (k+1)z−τk

kz−τk
f (y + τk) dy

=
∫ (k+1)z−τk

kz−τk
f (x+ τk) dx

=
∫ z

0
f (x) dx+

∫ z

0
[f (x+ τk)− f (x)] dx

+
∫ 0

kz−τk
f (x+ τk) dx+

∫ (k+1)z−τk

z
f (x+ τk) dx

=: I1 + I2 + I3 + I4.

Since f is a u.a.p. function, it follows that

sup
x∈R
|f (x+ τk)− f (x)| ≤ ϵ,

and thus

|I2| =
∣∣∣∣∣ ∫ z

0
[f (x+ τk)− f (x)] dx

∣∣∣∣∣ ≤ ∫ z

0
|f (x+ τk)− f (x)| dx ≤

∫ z

0
ϵ dx = ϵz.
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Let

A := sup
x∈R
|f (x)|.

We can see that the length of the range of integration in both I3 and I4 is less than lϵ,

therefore we have that

|I3| < Alϵ, |I4| < Alϵ.

Hence for every k ∈ {0, . . . ,n− 1} there exists λk ∈ C such that |λk | ≤ 1, and λk verifies∫ (k+1)z

kz
f (x) dx =

∫ z

0
f (x) dx+λk(ϵz+ 2Alϵ).

Consequently

1
z

n−1∑
k=0

∫ (k+1)z

kz
f (x) dx =

1
z

n−1∑
k=0

[∫ z

0
f (x) dx+λk (ϵz+ 2Alϵ)

]
,

that is,
1
nz

∫ nz

0
f (x) dx =

1
z

∫ z

0
f (x) dx+

1
n

n−1∑
k=0

λk

(
ϵ+

2Alϵ
z

)
, (3.3)

where λ∗n := 1
n

n−1∑
k=0

λk satisfies |λ∗n| ≤ 1. Consider η > 0 as small as we please. If

(
η > 8ϵ⇔ ϵ <

η

8

)
,

(
η >

16Alϵ
z
⇔ 1

z
<

η

16Alϵ

)
,

then we can see that there exists θn ∈ C that verifies |θn| ≤ 1 and also

1
nz

∫ nz

0
f (x) dx =

1
z

∫ z

0
f (x) dx+θn

η

4
. (3.4)

Given y > z, there exists ny ∈ N such that y ∈ [nyz, (ny + 1)z[ and thus there is λy ∈ [0,1]

such that

y = (1−λy)nyz+λy(ny + 1)z = (ny +λy)z.

Since f is a u.a.p. function, we can assure by Theorem 2.2.1 that f is bounded and hence

there exists M ∈ R+ such that for every x ∈ R we have |f (x)| ≤M. Consequently we get

that∣∣∣∣∣∣1y
∫ y

0
f (x) dx − 1

nyz

∫ nyz

0
f (x) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
(ny +λy)z

∫ (ny+λy )z

0
f (x) dx − 1

nyz

∫ nyz

0
f (x) dx

∣∣∣∣∣∣
≤
∣∣∣∣∣∣ −λy
ny(ny +λy)z

∫ nyz

0
f (x) dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣ 1
(ny +λy)z

∫ (ny+λy )z

nyz
f (x) dx

∣∣∣∣∣∣∣
≤

λy
ny(ny +λy)z

∫ nyz

0
M dx+

1
(ny +λy)z

∫ (ny+λy )z

nyz
M dx
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=
Mλy
ny +λy

+
Mλy
ny +λy

=
2Mλy
ny +λy

≤ 2M
ny

,

and thus we can assure that

lim
y→+∞

∣∣∣∣∣∣1y
∫ y

0
f (x) dx − 1

nyz

∫ nyz

0
f (x) dx

∣∣∣∣∣∣ ≤ lim
y→+∞

2M
ny

= 0.

Therefore there exists y0 > 0 such that for every y > y0,∣∣∣∣∣∣ 1
y

∫ y

0
f (x) dx − 1

nyz

∫ nyz

0
f (x) dx

∣∣∣∣∣∣ < η4 . (3.5)

Let y1, y2 > y0. Then we can assure that there exist n1,n2 ∈ N such that y1 ∈ [n1z, (n1 + 1)z[

and y2 ∈ [n2z, (n2 + 1)z[. Applying equation (3.4), we can guarantee that∣∣∣∣∣ 1
n1z

∫ n1z

0
f (x) dx − 1

n2z

∫ n2z

0
f (x) dx

∣∣∣∣∣ =
∣∣∣∣θn1

η

4
−θn2

η

4

∣∣∣∣ ≤ η2 . (3.6)

Taking into account inequalities (3.5) and (3.6), it follows that∣∣∣∣∣ 1
y1

∫ y1

0
f (x) dx − 1

y2

∫ y2

0
f (x) dx

∣∣∣∣∣ ≤ ∣∣∣∣∣ 1
n1z

∫ n1z

0
f (x) dx − 1

n2z

∫ n2z

0
f (x) dx

∣∣∣∣∣
+

∣∣∣∣∣ 1
y1

∫ y1

0
f (x) dx − 1

n1z

∫ n1z

0
f (x) dx

∣∣∣∣∣
+

∣∣∣∣∣ 1
y2

∫ y2

0
f (x) dx − 1

n2z

∫ n2z

0
f (x) dx

∣∣∣∣∣
<
η

2
+
η

4
+
η

4
= η,

and thus we have ∣∣∣∣∣ 1
y1

∫ y1

0
f (x) dx − 1

y2

∫ y2

0
f (x) dx

∣∣∣∣∣ < η,
for each y1, y2 > y0. Taking into account the previous inequality and Lemma 3.2.3, we

conclude that the limit

Mf := lim
y→+∞

(
1
y

∫ y

0
f (x) dx

)
indeed exists and is a finite value as we wanted to prove.

In the following result we will see an alternative way to compute the mean value of a

u.a.p. function.

Theorem 3.2.5 ([4, Chapter 1, Section 3, Theorem 2]). If f is a u.a.p. function, then

Mf = lim
z→∞

1
z

∫ z
2

− z2
f (x) dx.

Proof. Let ϵ,z > 0. Taking into account equation (3.3) from the previous Theorem, we get

that

λ∗ := lim
n→∞

λ∗n =
Mf − 1

z

∫ z
0 f (x) dx

ϵ+ 2Alϵ
z

,
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where λ∗n := 1
n

n−1∑
k=0

λk and λ∗ satisfies |λ∗| ≤ 1, consequently, the limit of λ∗n when n→∞

exists. Organizing both sides of the previous equation, we have that

Mf =
1
z

∫ z

0
f (x) dx+λ∗

(
ϵ+

2Alϵ
z

)
. (3.7)

The term λ∗
(
ϵ+ 2Alϵ

z

)
is the error of the representation of Mf by the integral

1
z

∫ z

0
f (x) dx,

and the term λ∗
(
ϵ+ 2Alϵ

z

)
depends on ϵ,A, lϵ and z. The elements ϵ and z are independent

of the function f , but A and lϵ depend on the function f . Given a ∈ R, we can guarantee

that the translation function Taf has the same values for lϵ and A as the function f ,

consequently it follows from equation (3.7) that

MTaf =
1
z

∫ z

0
(Taf )(x) dx+λ∗

(
ϵ+

2Alϵ
z

)
.

Applying Lemma 3.2.2 we can assure that Mf =MTaf , therefore we have, by the previous

equation, that

Mf =
1
z

∫ a+z

a
f (x) dx+λ∗

(
ϵ+

2Alϵ
z

)
,

which implies, in particular, that

Mf =
1
z

∫ z
2

− z2
f (x) dx+λ∗

(
ϵ+

2Alϵ
z

)
.

Let δ > 0 and consider ϵ so small that ϵ < δ
2 . Due to the fact that

lim
z→∞

2Alϵ
z

= 0,

there exists p ∈ N such that if z > p, then 2Alϵ
z < δ

2 . In these conditions if z > p, then∣∣∣∣∣Mf −
1
z

∫ a+z

a
f (x) dx

∣∣∣∣∣ =

∣∣∣∣∣∣λ∗
(
ϵ+

2Alϵ
z

)∣∣∣∣∣∣ ≤ ϵ+
2Alϵ
z

<
δ
2

+
δ
2

= δ.

That is, the integral
1
z

∫ a+z

a
f (x) dx (3.8)

converges uniformly in a ∈ R to Mf when z→∞, hence we conclude that

Mf = lim
z→∞

1
z

∫ z
2

− z2
f (x) dx.
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Given x ∈ R and a function f : R→K, we are going to define the function f̃x by

f̃x(t) := f̃ (x, t) := f (t + x)f (t),

for every t ∈ R, where the function f , as usual, is defined by

f (x) := f (x), x ∈ R.

In the next result we check that, in fact, the mean value of the function f̃x and the

function gz, with z ∈ R+, defined by

gz(x) :=
1
z

∫ z

0
f̃x(t) dt, x ∈ R

are u.a.p. functions.

Lemma 3.2.6. Let ϵ > 0 and let f be a u.a.p. function. Then there exists lϵ > 0 such that for
all z > 0, ∣∣∣∣∣Mf −

1
z

∫ z

0
f (x) dx

∣∣∣∣∣ ≤ ϵ+
2lϵ
z

sup
x∈R
|f (x)|.

Proof. Given ϵ > 0, taking into account equality (3.7), there exists lϵ > 0 such that

Mf =
1
z

∫ z

0
f (x) dx+λ∗

(
ϵ+

2lϵ
z

sup
x∈R
|f (x)|

)
,

where λ∗ ∈ C satisfies |λ∗| ≤ 1 and z ∈ R+. Therefore, organizing the previous equality and

applying the absolute value, we have∣∣∣∣∣Mf −
1
z

∫ z

0
f (x) dx

∣∣∣∣∣ = |λ∗|
∣∣∣∣∣∣ϵ+

2lϵ
z

sup
x∈R
|f (x)|

∣∣∣∣∣∣ ≤ ϵ+
2lϵ
z

sup
x∈R
|f (x)|

as we wanted to prove.

Theorem 3.2.7 ([4, Chapter 1, Section 3, Theorem 3]). If f is a u.a.p. function, then for
every z > 0, the functions f1 and f2,z defined by

f1(x) :=Mt,f̃ (x,t), f2,z(x) :=
1
z

∫ z

0
f̃ (x, t) dt

are u.a.p. functions. Moreover, the function f2,z tends to the function f1 uniformly in R when
z→ +∞.

Proof. Since f is a u.a.p. function, applying Theorem 2.3.1 and 2.3.6 it follows that for

each x ∈ R, f̃ (x, t) is also a uniformly almost periodic function of variable t. Let ϵ1 > 0.

Due to the fact that for each x ∈ R the function f̃x is uniformly almost periodic, there exists

l̃ϵ1
> 0 such that every interval with length l̃ϵ1

> 0 intersects Eϵ1,f̃
and using Theorem 2.2.1

we have that f̃ is bounded, therefore we have

B := sup
t∈R
|f̃ (x, t)| <∞.
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Using equation (3.7) and replacing ϵ,f ,A and lϵ with ϵ1, f̃ ,B and l̃ϵ1
respectively, we can

write

Mt,f̃ (x,t) =
1
z

∫ z

0
f̃ (x, t) dt +λ∗

ϵ1 +
2̃lϵ1

B

z

 .
In these conditions we can see that B ≤ A2. Let ϵ1 := 2Aϵ and let τ ∈ Eϵ,f . Then we have

|f̃x(t + τ)− f̃x(t)| = |f (t + x+ τ)f (t + τ)− f (t + x)f (t)|

= |f (t + x+ τ)f (t + τ)− f (t + x)f (t + τ) + f (t + x)f (t + τ)− f (t + x)f (t)|

≤ |f (t + x+ τ)f (t + τ)− f (t + x)f (t + τ)|+ |f (t + x)f (t + τ)− f (t + x)f (t)|

= |(f (t + x+ τ)− f (t + x))f (t + τ)|+ |(f (t + τ)− f (t))f (t + x)|

≤ ϵA+ ϵA = 2ϵA = ϵ1.

Therefore the set Eϵ,f ⊆ Eϵ1,f̃
and, consequently, any interval with length lϵ intersects

Eϵ1,f̃
. Hence we can consider, without any loss of generality, that lϵ = l̃ϵ1

. Consequently

there exists λ∗∗ ∈ C such that |λ∗∗| ≤ 1, and satisfies

Mt,f̃ (x,t) =
1
z

∫ z

0
f̃ (x, t) dt +λ∗∗

(
2Aϵ+

2A2lϵ
z

)
,

that is,

f1(x) = f2,z(x) +λ∗∗
(
2Aϵ+

2A2lϵ
z

)
.

Let δ > 0. Since we can take ϵ to be as small as we please, we can consider that

|2Aϵλ∗∗| < δ
2
.

Taking into account that

lim
z→∞

2A2lϵλ
∗∗

z
= 0,

there exists p ∈ N such that if z > p, then∣∣∣∣∣∣2A2lϵλ
∗∗

z

∣∣∣∣∣∣ < δ2 .
Consequently if z > p, we shall have for every x ∈ R,

|f2,z(x)− f1(x)| =
∣∣∣∣∣∣λ∗∗

(
2Aϵ+

2A2lϵ
z

)∣∣∣∣∣∣ ≤ |2Aϵλ∗∗|+
∣∣∣∣∣∣2A2lϵλ

∗∗

z

∣∣∣∣∣∣ < δ2 +
δ
2

= δ,

therefore f2,z tends to f1 uniformly in R when z→∞.

Let τ ∈ Eϵ,f . In these circumstances, analysing the definition of the function f2,z, it

follows that

|f2,z(x+ τ)− f2,z(x)| =
∣∣∣∣∣ 1
z

∫ z

0
[f̃ (x+ τ, t)− f̃ (x, t)] dt

∣∣∣∣∣
≤ 1
z

∫ z

0
| [f (t + x+ τ)− f (t + x)]f (t) | dt
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≤ 1
z

∫ z

0
ϵA dt = Aϵ,

that is, Eϵ,f ⊆ EAϵ,f2,z and consequently f2,z is a u.a.p. function for each z > 0. Due to

the fact that f2,z tends uniformly to f1, applying Theorem 2.4.2 to the sequence (fn)n∈N
defined by

fn(x) :=
1
n

∫ n

0
f̃ (x, t) dt,

we get that f1 is also a u.a.p. function as we wanted to prove.

3.3 Fourier Series of u.a.p. Functions

We are going to define the function eλ by

eλ(x) := eiλx, x ∈ R

for each λ ∈ R. In these conditions we can assure that for any λ ∈ R, eλ is a periodic

function, therefore it is a u.a.p. function, and we have that

Meλ =


lim
z→∞

1
z

∫ z
0 e

iλx dx, if λ , 0

lim
z→∞

1
z

∫ z
0 1 dx, if λ = 0

=


0, if λ , 0

1, if λ = 0.

(3.9)

Let f be a u.a.p. function and λ ∈ R. Since e−λ is a u.a.p. function, applying Theorem

2.3.6, we get that f e−λ is also a uniformly almost periodic function. Consequently, by

Theorem 3.2.4, it follows that Mf e−λ exists. In this work we will denote for every λ ∈ R,

af (λ) :=Mf e−λ .

Theorem 3.3.1 ([4, Chapter 1, Section 3, Theorem 4]). Let f be a uniformly almost periodic
function and N ∈ N. Consider {b1, . . . , bN } ⊆ C and {λ1, . . . ,λN } ⊆ R such that for every i, j ∈
{1, . . . ,N } if i , j, then λi , λj . If

h(x) :=
N∑
n=1

bneλn(x),

then

M|f −h|2 =M|f |2 −
N∑
n=1

|af (λn)|2 +
N∑
n=1

|bn − af (λn)|2.

Proof. Firstly let us observe that for every x ∈ R,

|f (x)− h(x)|2 = (f (x)− h(x)) · (f (x)− h(x)) = (f (x)− h(x)) · (f (x)− h(x))

=

f (x)−
N∑
n=1

bne
iλnx

 ·
f (x)−

N∑
n=1

bne
−iλnx


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= f (x)f (x)−
N∑
n=1

f (x)bne
−iλnx −

N∑
n=1

f (x)bne
iλnx +

N∑
n=1

N∑
m=1

bnbme
i(λn−λm)x.

Using the previous statement, we can assure that

M|f −h|2 =M|f |2 −
N∑
n=1

bnMf e−λn
−

N∑
n=1

bnMf eλn
+

N∑
n=1

N∑
m=1

bnbmMeλn−λm
,

and observing equation (3.9), it follows that Me0
= 1 and Meδ = 0 for any δ , 0, conse-

quently
N∑
n=1

N∑
m=1

bnbmMeλn−λm
=

N∑
n=1

|bn|2.

Hence we can conclude that

M|f −h|2 =M|f |2 −
N∑
n=1

bnaf (λn)−
N∑
n=1

bnaf (λn) +
N∑
n=1

bnbn

=M|f |2 −
N∑
n=1

af (λn)af (λn) +
N∑
n=1

(bn − af (λn)) · (bn − af (λn))

=M|f |2 −
N∑
n=1

|af (λn)|2 +
N∑
n=1

|bn − af (λn)|2.

The following result shows us that, given a u.a.p. function f , the set of values λ ∈ R
for which af (λ) , 0 is at most a countable set.

Theorem 3.3.2 ([4, Chapter 1, Section 3, Theorem 5]). If f is a u.a.p. function, then there
exists at most a countable set of values of λ ∈ R for which af (λ) , 0.

Proof. Applying Theorem 3.3.1, we can see that h(x) :=
N∑
n=1

bne
iλnx gives us the best

approximation in mean to f . If we consider bn = af (λn) for every n ∈ {1, . . .N }, then we

have

M|f −h|2 =M|f |2 −
N∑
n=1

|af (λn)|2 ⇔ M|f |2 =M|f −h|2 +
N∑
n=1

|af (λn)|2. (3.10)

Since M|f |2 ,M|f −h|2 and
N∑
n=1

|af (λn)|2 have non-negative values, it follows, by equation

(3.10), that
N∑
n=1

|af (λn)|2 ≤M|f |2 . (3.11)

Due to the fact that the previous inequality is true for anyN ∈ N of real numbers λ1, . . . ,λN ,

we get that for every ϵ > 0 there corresponds at most a finite number of values of λ for

which |af (λ)| > ϵ. If af (λ) , 0, then there exists m ∈ N such that

|af (λ)| > 1 ∨ 1
m+ 1

< |af (λ)| ≤ 1
m
,
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that is, each of these inequalities is satisfied by a finite number of values of λ. Conse-

quently there exists at most a countable set of values of λ that verify af (λ) , 0 as we

wanted to prove.

Taking into account the previous theorem, we can assure that there exists B ⊆ N such

that |{λn : af (λn) , 0 ∧ n ∈ N}| = |B|. In these conditions we say that λ1,λ2, . . . are the

Fourier exponents and af (λ1), af (λ2), . . . are the Fourier coefficients of the function f . The

series
∞∑
n=1

af (λn)eiλnx

is called the Fourier series of the function f , and we write it as being

f (x) ∼
∞∑
n=1

af (λn)eiλnx.

Since inequality (3.11) is true for any N ∈ N, we can assure that

∞∑
n=1

|af (λn)|2 ≤M|f |2 .

The above inequality is called the Bessel inequality for uniformly almost periodic func-

tions.

Example 3.3.3. Let f be a purely periodic function with period 2π. In these conditions

we know that its Fourier series is defined by

f (x) ∼
∞∑

n=−∞
Ane

inx

where the constants An for every n ∈ Z, satisfy the Parseval Identity [2, Theorem 8.63]

An :=
1

2π

∫ 2π

0
f (x)e−inx dx,

∞∑
n=−∞

|An|2 =
1

2π

∫ 2π

0
|f (x)|2 dx.

However, since f is a periodic function, it follows that f is a u.a.p. function and taking

into account that f and e−n are periodic functions with period 2π, we have that for each

n ∈ Z

Mf e−n = lim
y→∞

1
y

∫ y

0
f (x)e−inx dx

= lim
m→∞

1
m2π

∫ m2π

0
f (x)e−inx dx

= lim
m→∞

m
m2π

∫ 2π

0
f (x)e−inx dx

=
1

2π

∫ 2π

0
f (x)e−inx dx
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and also

M|f |2 = lim
y→∞

1
y

∫ y

0
|f (x)|2 dx

= lim
m→∞

1
m2π

∫ m2π

0
|f (x)|2 dx

= lim
m→∞

m
m2π

∫ 2π

0
|f (x)|2 dx

=
1

2π

∫ 2π

0
|f (x)|2 dx.

The statements made in this example assure that the coefficients An are also Fourier

coefficients of f in the new sense, and there cannot be any other Fourier coefficients in

the new definition. Hence if we consider a periodic function, the definition of the Fourier

series we were used to coincides with the new one.

Theorem 3.3.4 ([4, Chapter 1, Section 3, Theorem 8]). If f is a u.a.p. function represented

by the sum of a uniformly convergent trigonometric series f (x) =
∞∑
n=1

ane
iλnx, then the Fourier

series of f coincides with this series.

Proof. Firstly let us observe that for every λ ∈ R, the series
∞∑
n=1

ane
i(λn−λ)x is a uniformly

convergent series because
∞∑
n=1

ane
iλnx is a uniformly convergent series by our hypothesis.

In these conditions it follows that

Mf e−λ = lim
y→∞

1
y

∫ y

0
e−iλx

∞∑
n=1

ane
iλnx dx =

∞∑
n=1

anMeλn−λ
.

Taking into account equation (3.9), we can see that

Meλn−λ
=

0, if λ , λn
1, if λ = λn.

Consequently if there exists n ∈ N such that λ = λn, then Mf e−λ = an, otherwise we have

Mf e−λ = 0. Therefore for every n ∈ N, we conclude that af (λn) =Mf e−λn
= an.

As our intuition would tell us, any non-negative u.a.p. real function with mean value

equal to 0 must be the null function.

Theorem 3.3.5 ([4, Chapter 1, Section 3, Theorem 10]). If f is a u.a.p. real function, f (x) ≥ 0

for every x ∈ R and Mf = 0, then f (x) = 0 for any x ∈ R.

Proof. Let us suppose, by contradiction, that there exists x0 ∈ R such that

f (x0) =m > 0.
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Since f is a u.a.p. function, it follows that f is continuous and therefore there exists δ > 0

such that for every x ∈]x0 − δ,x0 + δ[,

f (x) >
2
3
·m. (3.12)

Since 1
3m > 0 and f is a u.a.p. function, there is l 1

3m
> 0 such that any interval with

length l 1
3m

intersects El 1
3m
,f . Consider, without loss of generality, that l 1

3m
> 2δ. In these

conditions for any interval I with length l 1
3m

, there exists τ ∈ E 1
3m,f

such that x0 + τ ∈ I
and thus I contains at least one of the intervals ]x0 + τ − δ,x0 + τ[ or ]x0 + τ,x0 + τ + δ[,

because I has length equal to l 1
3m
> 2δ. Taking into account that

sup
x∈R
|f (x+ τ)− f (x)| ≤ 1

3
m⇒ sup

x∈R
|f (x − τ)− f (x)| ≤ 1

3
m,

we can guarantee, using inequality (3.12), that for every x ∈]x0 + τ − δ,x0 + τ[ and x ∈
]x0 + τ,x0 + τ + δ[,

|f (x)− f (x − τ)| ≤ 1
3
m⇒−1

3
m ≤ f (x)− f (x − τ) ≤ 1

3
m⇒ f (x) ≥ f (x − τ)− 1

3
m >

1
3
m.

Consequently in each interval of length l 1
3m

there exists a sub-interval of length δ, such

that f verifies f (x) > 1
3m, for each x in that sub-interval. Taking into account the above

inequality and the fact that f is a non negative function, we have for every λ ∈ R,∫ λ+l 1
3m

λ
f (x) dx ≥ mδ

3
.

Therefore we get

0 =Mf = lim
n→∞

1
nl 1

3m

∫ nl 1
3m

0
f (x) dx ≥ mδ

3
> 0,

which is a contradiction, thus f (x) = 0 for any x ∈ R as we wanted.

Let (fk)k∈N be a sequence of u.a.p. functions. We know that the set of the Fourier

exponents of each function fk is a countable set for every k ∈ N. Let us denote all of those

exponents by {λ(k)
n : n ∈ N}. In these conditions the Fourier series of each function fk can

be represented by

fk(x) ∼
∞∑
n=1

afk (λ
(k)
n )eiλ

(k)
n x,

where {afk (λ
(k)
n ) : n ∈ N} represents the Fourier coefficients of the function fk for any k ∈ N.

It is important to observe that a countable union of countable sets is a countable set. Thus

if we add at most a countable number of terms in each Fourier series of each function fk
for which afk (λ

(k)
n ) = 0, then we can consider, without loss of generality, that every function

fk has the same Fourier exponents, that is, if i, j ∈ N and i , j, then we can represent the

Fourier series of fi and fj by

fi(x) ∼
∞∑
n=1

afi (λn)eiλnx, fj(x) ∼
∞∑
n=1

afj (λn)eiλnx.
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Theorem 3.3.6 ([4, Chapter 1, Section 3, Theorem 11]). Let (fk)k∈N a sequence of u.a.p.
functions such that for every k ∈ N ,

fk(x) ∼
∞∑
n=1

afk (λn)eiλnx.

If (fk)k∈N converges uniformly to a function f , then the Fourier series of f is given by

f (x) ∼
∞∑
n=1

af (λn)eiλnx,

where af (λn) = lim
k→∞

afk (λn), for any n ∈ N.

Proof. Firstly let us observe that, by definition, af (λn) = Mf e−λn
and afk (λn) = Mfke−λn

for

every n,k ∈ N. Since (fk)k∈N converges uniformly to f , it follows that

lim
k→∞

sup
x∈R
|fk(x)− f (x)| = 0.

In these conditions we can assure that for every λ ∈ R,

lim
k→∞

∣∣∣Mfke−λ −Mf e−λ

∣∣∣ = lim
k→∞

∣∣∣∣∣ lim
y→∞

1
y

∫ y

0
[fk(x)− f (x)]e−iλx dx

∣∣∣∣∣
≤ lim
k→∞

(
lim
y→∞

1
y

∫ y

0
|fk(x)− f (x)| dx

)
≤ lim
k→∞

(
lim
y→∞

1
y

∫ y

0
sup
x∈R
|fk(x)− f (x)| dx

)
≤ lim
k→∞

(
sup
x∈R
|fk(x)− f (x)|

)
= 0.

Therefore lim
k→∞

afk (λn) = af (λn) for any n ∈ N, and we conclude that

f (x) ∼
∞∑
n=1

af (λn)eiλnx.

3.4 Uniqueness Theorem for Fourier Series

If f is a u.a.p. function, then we shall denote

φf (λ,z) :=
1
z

∫ z

0
f (x)e−iλx dx,

for every λ ∈ R and z > 0. In the next result we will see that the function φf (λ,z) tends to

the null function uniformly in z ∈ [1,+∞[ when |λ| →∞.

Lemma 3.4.1 ([4, Chapter 1, Section 4, Lemma 2]). If f is a u.a.p. function, then φf (λ,z)

tends to 0 uniformly in z ∈ [1,+∞[ when |λ| →∞.
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Proof. Let λ ∈ R \ {0} and z ≥ 1. In these conditions it follows that

φf (λ,z) +φf (λ,z) =
1
z

∫ z

0
f (x)e−iλx dx+

1
z

∫ z

0
f (x)e−iλx dx

=
1
z

∫ z

0
f (x)e−iλx dx+

1
z

∫ π
λ+z

π
λ

f
(
y − π

λ

)
e−iλ(y− πλ ) dy

=
1
z

∫ z

0
f (x)e−iλx dx − 1

z

∫ π
λ+z

π
λ

f
(
x − π

λ

)
e−iλx dx

=
1
z

∫ z

0
f (x)e−iλx dx − 1

z

∫ 0

π
λ

f
(
x − π

λ

)
e−iλx dx

− 1
z

∫ z

0
f
(
x − π

λ

)
e−iλx dx − 1

z

∫ π
λ+z

z
f
(
x − π

λ

)
e−iλx dx

=
1
z

∫ z

0

(
f (x)− f

(
x − π

λ

))
e−iλx dx − 1

z

∫ 0

π
λ

f
(
x − π

λ

)
e−iλx dx

− 1
z

∫ π
λ+z

z
f
(
x − π

λ

)
e−iλx dx.

Consequently we have

φf (λ,z) =
1
2z

∫ z

0

(
f (x)− f

(
x − π

λ

))
e−iλx dx − 1

2z

∫ 0

π
λ

f
(
x − π

λ

)
e−iλx dx

− 1
2z

∫ π
λ+z

z
f
(
x − π

λ

)
e−iλx dx =: I1 + I2 + I3.

Let

A = sup
x∈R
|f (x)|, ω(τ) = sup

x∈R
|f (x+ τ)− f (x)|.

We can see that

|I1| ≤
1
2
ω

( π
|λ|

)
, |I2| ≤

Aπ
2z|λ|

, |I3| ≤
Aπ

2z|λ|
,

therefore

|φf (λ,z)| = |I1 + I2 + I3| ≤ |I1|+ |I2|+ |I3| ≤
1
2
ω

( π
|λ|

)
+
Aπ
z|λ|
≤ 1

2
ω

( π
|λ|

)
+
Aπ
|λ|
.

Hence we can conclude that

lim
|λ|→∞

|φf (λ,z)| ≤ lim
|λ|→∞

(1
2
ω

( π
|λ|

)
+
Aπ
|λ|

)
= 0,

that is, φf (λ,z) tends to 0 uniformly in z ∈ [1,+∞[ when |λ| →∞.

The following three preparatory results will help us to establish Theorem 3.4.6.

Lemma 3.4.2 ([4, Chapter 1, Section 4, Lemma 3]). Let f be a u.a.p. function and ϵ > 0. If
Mf = 0, then there exist δ1,δ2 > 0 such that∣∣∣∣∣1z

∫ z

0
f (x)e−iλx dx

∣∣∣∣∣ < ϵ
for every z > δ2 and for any λ ∈]− δ1,δ1[.
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Proof. Let a ∈ R and ϵ > 0. Applying Lemma 3.2.2, we have Mf =MTaf and since Mf = 0,

it follows that MTaf = 0, consequently there exists δ2 > 0 such that∣∣∣∣∣ 1
z1

∫ z1

0
f (x+ a) dx

∣∣∣∣∣ ≤ ϵ2 (3.13)

for every z1 >
δ2
2 . In these conditions it is not hard to see that any z2 > δ2 can be written

as z2 = nz1, where n ∈ N and z1 ∈
]
δ2
2 ,δ2

[
. Let us consider

A = sup
x∈R
|f (x)|.

Due to the fact that e−i0x = 1, there exists δ1 > 0 such that

|e−iλx − 1| < ϵ
2A

(3.14)

for every λ ∈]− δ1,δ1[ and for any x ∈ [0,δ2]. Due to the fact that z2 = nz1, we get

1
z2

∫ z2

0
f (x)e−iλx dx =

1
nz1

n−1∑
k=0

∫ (k+1)z1

kz1

f (y)e−iλy dy

=
1
nz1

n−1∑
k=0

e−iλkz1

∫ z1

0
f (x+ kz1)e−iλx dx.

Using both inequalities (3.13) and (3.14) we have that for every k ∈ {0, . . . ,n− 1},∣∣∣∣∣ 1
z1

∫ z1

0
f (x+ kz1)e−iλx dx

∣∣∣∣∣ =
∣∣∣∣∣ 1
z1

∫ z1

0
f (x+ kz1)(e−iλx − 1 + 1) dx

∣∣∣∣∣
≤

∣∣∣∣∣ 1
z1

∫ z1

0
f (x+ kz1)(e−iλx − 1) dx

∣∣∣∣∣+
∣∣∣∣∣ 1
z1

∫ z1

0
f (x+ kz1) dx

∣∣∣∣∣
<

ϵ
2Az1

∫ z1

0
A dx+

∣∣∣∣∣ 1
z1

∫ z1

0
f (x+ kz1) dx

∣∣∣∣∣
≤ ϵ

2
+
ϵ
2

= ϵ.

Since
1
z2

∫ z2

0
f (x)e−iλx dx =

1
nz1

n−1∑
k=0

e−iλkz1

∫ z1

0
f (x+ kz1)e−iλx dx,

it follows that∣∣∣∣∣ 1
z2

∫ z2

0
f (x)e−iλx dx

∣∣∣∣∣ =

∣∣∣∣∣∣∣ 1
nz1

n−1∑
k=0

e−iλkz1

∫ z1

0
f (x+ kz1)e−iλx dx

∣∣∣∣∣∣∣
≤ 1
nz1

n−1∑
k=0

∣∣∣∣∣e−iλkz1

∫ z1

0
f (x+ kz1)e−iλx dx

∣∣∣∣∣
=

1
n

n−1∑
k=0

∣∣∣∣∣ 1
z1

∫ z1

0
f (x+ kz1)e−iλx dx

∣∣∣∣∣
<

1
n

n−1∑
k=0

ϵ =
ϵn
n

= ϵ.
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Consequently ∣∣∣∣∣ 1
z2

∫ z2

0
f (x)e−iλx dx

∣∣∣∣∣ < ϵ
for any z2 > δ2 and for every λ ∈]− δ1,δ1[ as we wanted to prove.

Corollary 3.4.3 ([4, Chapter 1, Section 4, Lemma 4]). Let f be a u.a.p. function, ϵ > 0 and
µ ∈ R. If Mf eµ = 0, then there exist δ(µ)

1 ,δ
(µ)
2 > 0 such that∣∣∣∣∣1z

∫ z

0
f (x)e−iλx dx

∣∣∣∣∣ < ϵ
for every z > δ(µ)

2 and for any λ ∈]µ− δ(µ)
1 ,µ+ δ

(µ)
1 [.

Proof. We can assure that f eµ is a u.a.p. function and consequently, applying Lemma

3.4.2, there exist δ1,δ2 > 0 such that∣∣∣∣∣1z
∫ z

0
f (x)eiµxe−iλx dx

∣∣∣∣∣ =
∣∣∣∣∣1z

∫ z

0
f (x)e−ix(λ−µ) dx

∣∣∣∣∣ < ϵ
for every z > δ2 and for any (λ − µ) ∈] − δ1,δ1[, that is, for each λ ∈]µ − δ1,µ + δ1[ as we

wanted to prove.

Lemma 3.4.4 ([4, Chapter 1, Section 4, Lemma 5]). Let ϵ > 0 and f be a u.a.p. function that
verifies af (λ) = 0 for every λ ∈ R. Then there exists z0 > 0, such that∣∣∣∣∣1z

∫ z

0
f (x)e−iλx dx

∣∣∣∣∣ < ϵ
for every z > z0 and for each λ ∈ R.

Proof. Let ϵ > 0. Applying Lemma 3.4.1, we can assure that there exists λ0 > 0, such that∣∣∣∣∣1z
∫ z

0
f (x)e−iλx dx

∣∣∣∣∣ < ϵ
for every z ≥ 1 and for any λ that satisfies |λ| > λ0. Given µ ∈ [−λ0,λ0] and using Corollary

3.4.3, it follows that there exist zµ,δµ > 0, such that∣∣∣∣∣1z
∫ z

0
f (x)e−iλx dx

∣∣∣∣∣ < ϵ
for every z > zµ and for any λ ∈]µ− δµ,µ+ δµ[. In these conditions it is obvious that⋃

µ∈[−λ0,λ0]

]µ− δµ,µ+ δµ[

is an open cover of the interval [−λ0,λ0], therefore taking into account the Heine-Borel

Theorem we get that [−λ0,λ0] is compact and thus there exist µ1, . . . ,µn ∈ R, where n ∈ N,
such that

[−λ0,λ0] ⊆
n⋃
k=1

[µk − δµk ,µk + δµk ].
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In these circumstances we can assure that∣∣∣∣∣1z
∫ z

0
f (x)e−iλx dx

∣∣∣∣∣ < ϵ
for every z > zµk , for any λ ∈]µk − δµk ,µk + δµk [ and for each k ∈ {1, . . . ,n}. Consequently,

if we consider z0 >max{1, zµ1
, . . . , zµn}, then we can conclude that for every z > z0, for any

λ ∈]µk − δµk ,µk + δµk [, for each k ∈ {1, . . . ,n} and for every λ that verifies |λ| > λ0,∣∣∣∣∣1z
∫ z

0
f (x)e−iλx dx

∣∣∣∣∣ < ϵ.
That is, the inequality stated previously is indeed true for any z > z0 and for every λ ∈ R
as we wanted to prove.

Lemma 3.4.5. Let z > 0 and let f1,z : R→ C be a continuous periodic function of period z.
Suppose that (Ak(z))k∈Z, is the sequence of its Fourier coefficients. Then the functions

f2,z(x) :=
1
z

∫ z

0
f1,z(x+ t)f 1,z(t) dt, x ∈ R,

f3,z(x) :=
1
z

∫ z

0
f2,z(x+ t)f 2,z(t) dt, x ∈ R,

are continuous periodic functions of period z, and (|Ak(z)|2)k∈Z and (|Ak(z)|4)k∈Z are the se-
quences of their Fourier coefficients, respectively.

Proof. Since f1,z is a continuous and periodic function, applying Weierstrass theorem, it

follows that

A := sup
x∈[0,z]

|f1,z(x)| <∞.

Taking into account Lemma 2.1.5 and Theorem 2.2.2, we have that the function f1,z is

uniformly continuous on R.
Let ϵ > 0. Then there exists δ > 0 such that for each x,y, t ∈ R, the inequality |x − y| < δ

implies that |f1,z(x+ t)− f1,z(y + t)| < ϵ. For such x,y, we have

|f2,z(x)− f2,z(y)| ≤ A
z

∫ z

0
|f (x+ t)− f (y + t)| dt ≤ ϵ,

that is, f2,z is continuous on R. The periodicity of f2,z follows immediately from the

periodicity of f1,z. Repeating the same argument with f2,z in place of f1,z, we see that f3,z
is a continuous periodic function of period z.

Since f1,z is a periodic function, applying Fubini’s Theorem [2, Theorem 5.32], it

follows that

1
z

∫ z

0
f2,z(x)e

−2πikx
z dx =

1
z

∫ z

0

(
1
z

∫ z

0
f̃1(x, t) dt

)
e
−2πikx

z dx

=
1
z

∫ z

0

(
1
z

∫ z

0
f1(x+ t)f1(t) dt

)
e
−2πikx

z dx
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=
1
z

∫ z

0

(
1
z

∫ z

0
f1(x+ t)f1(t)e

−2πik(x−t+t)
z dt

)
dx

=
1
z2

∫ z

0

(
f1(t)e

2πikt
z

∫ z

0
f1(x+ t)e

−2πik(x+t)
z dx

)
dt

=
1
z2

∫ z

0

(
f1(t)e

2πikt
z

∫ z+t

t
f1(y)e

−2πiky
z dx

)
dt

=
1
z2

∫ z

0

(
f1(t)e

2πikt
z

∫ z

0
f1(x)e

−2πikx
z dx

)
dt

=
(

1
z

∫ z

0
f1(t)e

2πikt
z dt

)(
1
z

∫ z

0
f1(x)e

−2πikx
z dx

)
=

(
1
z

∫ z

0
f1(t)e

−2πikt
z dt

)(
1
z

∫ z

0
f1(x)e

−2πikx
z dx

)
= Ak(z)Ak(z) = |Ak(z)|2,

that is,
1
z

∫ z

0
f2,z(x)e

−2πikx
z dx = |Ak(z)|2 (3.15)

for every k ∈ Z. In these conditions we can assure that the Fourier series of f2,z is

f2,z(x) ∼
∞∑

k=−∞
|Ak(z)|2e

2πikx
z ,

and repeating the same reasoning for the function f3,z,we guarantee that its Fourier series

is defined by

f3,z(x) ∼
∞∑

k=−∞
|Ak(z)|4e

2πikx
z

as we wanted to prove.

Now we have everything that we need in order to prove that the mean value of the

square of the absolute value of a u.a.p. function is always equal to 0, supposing that each

Fourier coefficient of that function is 0.

Theorem 3.4.6 ([4, Chapter 1, Section 4, Lemma 6]). If f is a u.a.p. function and af (λ) = 0

for every λ ∈ R, then M|f |2 = 0.

Proof. Let ϵ,z > 0 and let f1,z be a periodic function with period z, such that f1,z(x) = f (x)

for each x ∈ [0, z[. Applying Lemma 3.4.4, we can assure that there exists z0 > 0 such that

for each z > z0 and for every k ∈ Z,

|Ak(z)| :=
∣∣∣∣∣1z

∫ z

0
f1,z(x)e

−2πkxi
z dx

∣∣∣∣∣ =
∣∣∣∣∣1z

∫ z

0
f (x)e

−2πkxi
z dx

∣∣∣∣∣ < ϵ.
Taking into account the Parseval Identity [2, Theorem 8.63], it follows that

∞∑
k=−∞

|Ak(z)|2 =
1
z

∫ z

0
|f1,z(x)|2 dx =

1
z

∫ z

0
|f (x)|2 dx,
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which implies that
∞∑

k=−∞
|Ak(z)|2 ≤

1
z

∫ z

0
A2 dx = A2,

where

A := sup
x∈R
|f (x)|.

Consequently, we get that

∞∑
k=−∞

|Ak(z)|4 < ϵ2
∞∑

k=−∞
|Ak(z)|2 ≤ ϵ2A2. (3.16)

Let us recall that, given a function h : R→ C, we define the function h̃ by

h̃(x, t) := h(t + x)h(t), x, t ∈ R.

Consider the functions

f2,z(x) :=
1
z

∫ z

0
f̃1,z(x, t) dt, f3,z(x) :=

1
z

∫ z

0
f̃2,z(x, t) dt.

Applying Lemma 3.4.5, we conclude that f2,z and f3,z are continuous z-periodic functions

and (|Ak(z)|2)k∈Z and (|Ak(z)|4)k∈Z are the sequence of their Fourier coefficients, respec-

tively. Due to the fact that f3,z is a continuous function and using inequality (3.16), we

have that
∞∑

k=−∞
|Ak(z)|4e

2πikx
z

is a uniformly convergent series. Hence applying the corollary of Fejér’s Theorem[12, p.

19], the sum of the previous series coincides with the function f3,z, that is,

f3,z(x) =
∞∑

k=−∞
|Ak(z)|4e

2πikx
z , x ∈ R.

In these circumstances we have that

f3,z(0) =
∞∑

k=−∞
|Ak(z)|4.

Taking into account inequality (3.16) and the fact that the inequality |Ak(z)| < ϵ holds if

z > z0, we get that

lim
z→∞

f3,z(0) = 0,

hence

lim
z→∞

1
z

∫ z

0
|f2,z(x)|2 dx = lim

z→∞
f3,z(0) = 0.

Since f is a u.a.p. function, it follows that for every ϵ > 0, the set Eϵ,f is relatively dense

and thus we can consider an increasing sequence (zn)n∈N of positive numbers such that

zn ∈ E 1
n ,f

for any n ∈ N, and

lim
n→∞

zn = +∞.
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Consequently, we have

lim
n→∞

1
zn

∫ zn

0
|f2,zn(x)|2 dx = 0. (3.17)

Taking into account that zn ∈ E 1
n ,f
, we can see that for each x, t ∈ [0, zn],

|f (x+ t − zn)− f (x+ t)| ≤ 1
n
. (3.18)

Given n ∈ N, put z = zn. Analysing the definition of the function f2,z, due to the fact that

f1,z is a periodic function and zn ∈ E 1
n ,f

, we can assure that for every x ∈ [0, zn] we have

f2,zn(x) =
1
zn

∫ zn

0
f̃1,z(x, t) dt =

1
zn

(∫ zn−x

0
f̃1,z(x, t) dt +

∫ zn

zn−x
f̃1,z(x, t) dt

)
=

1
zn

(∫ zn−x

0
f̃1,z(x, t) dt +

∫ zn

zn−x
f̃1,z(x − zn, t) dt

)
=

1
zn

(∫ zn−x

0
f̃ (x, t) dt +

∫ zn

zn−x
f̃ (x − zn, t) dt

)
=

1
zn

(∫ zn

0
f̃ (x, t) dt −

∫ zn

zn−x
f̃ (x, t) dt +

∫ zn

zn−x
f̃ (x − zn, t) dt

)
=

1
zn

(∫ zn

0
f̃ (x, t) dt +

∫ zn

zn−x
[f (x+ t − zn)− f (x+ t)]f (t) dt

)
. (3.19)

For each x ∈ [0, zn], using inequality (3.18), one has∣∣∣∣∣∣ 1
zn

∫ zn

zn−x
[f (x+ t − zn)− f (x+ t)]f (t) dt

∣∣∣∣∣∣ ≤ 1
zn

∫ zn

zn−x

A
n
dt =

Ax
znn
≤ A
n
.

Consequently, there exists λn,x ∈ C such that |λn,x| ≤ 1 and verifies

1
zn

∫ zn

zn−x
[f (x+ t − zn)− f (x+ t)]f (t) dt =

λn,xA

n
.

Taking into account the previous equality and equation (3.19), it follows that

1
zn

∫ zn

0
f̃ (x, t) dt = f2,zn(x)−

λn,xA

n
. (3.20)

Let g(x) :=Mt,f̃ (x,t) for each x ∈ R. Applying Theorem 3.2.7, we can see that the function

g is a u.a.p. function and

hz(x) :=
1
z

∫ z

0
f̃ (x, t) dt, z > 0, x ∈ R

tends to g uniformly in R when z→∞, hence we get that

lim
n→∞

sup
x∈R

∣∣∣∣∣ 1
zn

∫ zn

0
f̃ (x, t) dt − g(x)

∣∣∣∣∣ = lim
n→∞

ϵn = 0,

where

ϵn := sup
x∈R

∣∣∣∣∣ 1
zn

∫ zn

0
f̃ (x, t) dt − g(x)

∣∣∣∣∣ , n ∈ N. (3.21)
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It follows from equations (3.20) and (3.21) that for each x ∈ [0, zn],

|g(x)| ≤ ϵn +
∣∣∣∣∣ 1
zn

∫ zn

0
f̃ (x, t) dt

∣∣∣∣∣ ≤ ϵn + |f2,zn(x)|+ A
n
.

Moreover, we can see, by definition of the function f2,z, that

|f2,zn(x)| ≤ 1
zn

∫ zn

0
|f1,zn(x+ t)f 1,zn

(t)| dt ≤ A2.

Hence, for each x ∈ [0, zn], one has

|g(x)|2 ≤ |f2,zn(x)|2 + 2A2
(
ϵn +

A
n

)
+
(
ϵn +

A
n

)2
.

Therefore

1
zn

∫ zn

0
|g(x)|2 dx ≤ 1

zn

∫ zn

0
|f2,zn(x)|2 dx+ 2A2

(
ϵn +

A
n

)
+
(
ϵn +

A
n

)2
.

Consequently, using the previous inequality and equation (3.17), we get that

lim
n→∞

1
zn

∫ zn

0
|g(x)|2 dx = 0.

Fix γ > 0. By Lemma 3.2.6, there exists lγ > 0 such that for all n ∈ N,

0 ≤M|g |2 ≤
1
zn

∫ zn

0
|g(x)|2 dx+γ +

2lγ
zn
A2.

Since zn→ +∞ as n→∞, passing to the limit when n→ +∞, we get that

0 ≤M|g |2 ≤ γ.

Passing to the limit as γ → 0, we finally obtain M|g |2 = 0. Applying Theorem 3.3.5, we get

that |g(x)|2 = 0 for every x ∈ R, and we conclude that

g(0) =M|f |2 = 0

as we wanted to prove.

Fortunately, as in classical Fourier theory (see, e.g., [12, Chapter 1, Theorem 2.7]), we

can also guarantee that u.a.p. functions with the same Fourier series must be equal to

each other.

Theorem 3.4.7 ([4, Chapter 1, Section 4, Theorem 7]). If f and g are u.a.p. functions with
the same Fourier series, then f = g.

Proof. Let h = f − g. Since h is a u.a.p. function and f and g have the same Fourier series,

it follows that the function h satisfies ah(λ) = 0 for any λ ∈ R. Applying Theorem 3.4.6

we can assure that M|h|2 = 0, consequently using Theorem 3.3.5 we have that h(x) = 0 for

every x ∈ R, and we conclude that f = g.
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We finish this section by establishing the Parseval Identity for u.a.p. functions.

Theorem 3.4.8 ([4, Chapter 1, Section 4, Theorem 8]). Let f be a u.a.p. function and

consider
∞∑
n=1

af (λn)eiλnx its Fourier series. Then

M|f |2 =
∞∑
n=1

|af (λn)|2,

where the above equation is called the Parseval Identity for u.a.p. functions.

Proof. Let f be a u.a.p. function and
∞∑
n=1

af (λn)eiλnx its Fourier Series. For each x ∈ R,

consider the function g(x) =Mt,f̃ (x,t). Taking into account the proof of Theorem 3.4.6 and

using a similar reasoning for the function g that we used on equation (3.15), we get that

Mge−λn
= |af (λn)|2

for each n ∈ N, and thus the Fourier series of g is

g(x) ∼
∞∑
n=1

|af (λn)|2eiλnx.

Applying Theorem 3.3.1, we can assure that

∞∑
n=1

|af (λn)|2 ≤M|f |2 ,

that is, the series
∞∑
n=1

|af (λn)|2 is convergent, consequently the series

ϕ(x) :=
∞∑
n=1

|af (λn)|2eiλnx

is absolutely convergent and also uniformly convergent. Sinceϕ is a uniformly convergent

series, using Theorem 2.3.4 we have that ϕ is a u.a.p. function and by Theorem 3.3.4,

the Fourier series of ϕ coincides with the series for which ϕ is represented. Hence the

functions g and ϕ have the same Fourier series, consequently applying Theorem 3.4.7 we

get that g = ϕ, that is,

g(x) =
∞∑
n=1

|af (λn)|2eiλnx.

In these conditions we can see that g(0) =
∞∑
n=1

|af (λn)|2 and due to the fact that g(x) =

Mt,f̃ (x,t), it follows that g(0) =M|f |2 and we conclude that

∞∑
n=1

|af (λn)|2 =M|f |2

as we wanted to prove.
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3.5 Approximation of u.a.p. Functions by Trigonometric

Polynomials

We start this section by defining two new classes of functions, the class of finite sums of

trigonometric polynomial functions and its closure in L∞(R).

Definition 3.5.1. Let AP P (R) denote the vector space over C of all finite sums of trigono-

metric polynomial functions, that is, the set of all finite sums of the form

n∑
k=1

cke
iλkx,

where ck ∈ C and λk ∈ R for every k ∈ {1, . . . ,n}. We define AP (R) as the smallest closed

subset of L∞(R) that contains AP P (R), that is,

AP (R) = closL∞(R)(AP P (R)), (3.22)

where closL∞(R)(AP P (R)) denotes the closure of AP P (R) in L∞(R).

The following figures show us the behaviour of three trigonometric polynomial func-

tions.

Figure 3.1: f (x) = 10eix + (3 + 5i)e2ix − 3ieπix + 2e5ix, x ∈ [−6,6], x ∈ [−300,300].

Figure 3.2: f (x) = 4e−7ix + 10eix + 6ie
πix

3 , x ∈ [−10,10], x ∈ [−400,400].
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Figure 3.3: f (x) = eix + 2eπix + ie2ix, x ∈ [−20,20], x ∈ [−200,200].

In the following result we check that AP (R) is, indeed, contained in the set of u.a.p.

functions.

Theorem 3.5.2. As we defined before, let U (R) be the set of all uniformly almost periodic
functions and let AP (R) be the closure of AP P (R) in L∞(R). Then AP (R) ⊆U (R).

Proof. Let us consider a function ϕ ∈ AP (R). Since AP (R) = closL∞(R)(AP P (R)), we can

assure that there exists a sequence (pn)n∈N of terms in AP P (R) such that

lim
n→∞

∥ϕ − pn∥L∞(R) = 0.

Firstly let us note that for every n ∈ N, pn is a uniformly almost periodic function because

it is a sum of functions of the form c · eiλx, with c ∈ C and λ ∈ R, and we know that those

monomials are purely periodic functions and thus u.a.p. functions. Observing that the

sequence (pn)n∈N converges uniformly to ϕ, we just need to apply the Theorem 2.4.2 and

we can conclude that ϕ is indeed uniformly almost periodic, that is, AP (R) ⊆U (R).

The next result show us that the opposite is also true, that is, the set of u.a.p. functions

is contained in AP (R).

Theorem 3.5.3 ([4, Chapter 1, Section 5, Theorem 2]). Let f be a u.a.p. function, ϵ > 0 and

f (x) ∼
∞∑
n=1

af (λn)eiλnx.

In these conditions there exists a trigonometric polynomial function P , whose exponents are
Fourier exponents of f and

sup
x∈R
|f (x)− P (x)| ≤ ϵ.

Proof. Given k ∈ N, consider

fk(x) = f (x)−
k∑
n=1

af (λn)eiλnx,
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for any x ∈ R. Since fk is a u.a.p. function, using equation (3.10) and Theorem 3.4.8, it

follows that

M|f |2 =M|fk |2 +
k∑
n=1

|af (λn)|2,

which implies that

M|fk |2 =
∞∑

n=k+1

|af (λn)|2.

Let η > 0. Using the previous equality and due to the fact that
∞∑
n=1

|af (λn)|2 is a convergent

series, there is p ∈ N that verifies

M|fp |2 < η.

Taking into account the statement (3.8) of Theorem 3.2.5, we can assure that

1
z

∫ z

0
|fp(x+ s)|2 dx

tends to M|fp |2 uniformly in s ∈ R when z→∞, consequently there exists z0 > 0, such that∣∣∣∣∣1z
∫ z

0
|fp(x+ s)|2 dx −M|fp |2

∣∣∣∣∣ < η,
for every z > z0 and for any s ∈ R. Let s ∈ R. Using the inequality stated previously and

the fact that M|fp |2 < η, we get

1
z

∫ z

0
|fp(x+ s)|2 dx < 2η,

that is, ∫ z

0
|fp(x+ s)|2 dx < 2ηz. (3.23)

Since f is a u.a.p. function, there is l ϵ
3
> 0 such that any interval with length l ϵ

3
intersects

E ϵ
3 ,f

. Consider z =N (l ϵ
3

+ 1) > z0, where N ∈ N, and for every k ∈ {0, . . . ,N − 1}, let

τk ∈ [k(l ϵ
3

+ 1), k(l ϵ
3

+ 1) + l ϵ
3
] ∩ E ϵ

3 ,f
.

Using Theorem 2.2.2 we have that f is uniformly continuous, consequently there exists

δ ∈]0,1[ such that for any x1,x2 ∈ R,

|x1 − x2| < δ ⇒ |f (x1)− f (x2)| < ϵ
3
.

Let

B =
N−1⋃
k=0

]τk , τk + δ[

and consider the function

χB(x) =

1, if x ∈ B
0, if x ∈]0, z[ \ B.
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Applying Hölder’s inequality [2, Theorem 7.9], we have∣∣∣∣∣∫ z

0
fp(x+ s)χB(x) dx

∣∣∣∣∣2 ≤ ∫ z

0
|fp(x+ s)|2 dx

∫ z

0
(χB(x))2 dx. (3.24)

Observing the definition of the function χB and the fact that if i, j ∈ {0, . . . ,N −1} and i , j,

then ]τi , τi + δ[ ∩ ]τj , τj + δ[= ∅, we can see that∫ z

0
(χB(x))2 dx =Nδ,

and also ∫ z

0
fp(x+ s)χB(x) dx =

N−1∑
k=0

∫ τk+δ

τk

fp(x+ s) dx

=
N−1∑
k=0

∫ δ

0
fp(y + τk + s) dy

=
N−1∑
k=0

∫ δ

0
fp(x+ τk + s) dx.

Taking into account the previous equation and inequalities (3.23) and (3.24), it follows

that ∣∣∣∣∣∣∣
N−1∑
k=0

∫ δ

0
fp(x+ τk + s) dx

∣∣∣∣∣∣∣ <√
2ηzNδ,

which implies, using the fact that z =N (l ϵ
3

+ 1), that

∣∣∣∣∣∣∣ 1
Nδ

N−1∑
k=0

∫ δ

0
fp(x+ τk + s) dx

∣∣∣∣∣∣∣ <
√

2η(l ϵ
3

+ 1)

δ
.

If η < ϵ2δ
18(l ϵ

3
+1) , then we obtain

∣∣∣∣∣∣∣ 1
Nδ

N−1∑
k=0

∫ δ

0
fp(x+ τk + s) dx

∣∣∣∣∣∣∣ < ϵ3 . (3.25)

For k ∈ {0, . . . ,N − 1}, let

Pk(s) :=
1
Nδ

∫ δ

0

p∑
n=1

af (λn)eiλn(x+τk+s) dx =
1
Nδ

p∑
n=1

eiλns
∫ δ

0
af (λn)eiλn(x+τk) dx.

In these circumstances we can assure that Pk is a trigonometric polynomial function

whose exponents belong to the set of Fourier exponents of f and analyzing the definition

of the function fp and Pk , we get that

1
Nδ

∫ δ

0
fp(x+ τk + s) dx =

1
Nδ

∫ δ

0
f (x+ τk + s) dx − Pk(s). (3.26)
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Let P (s) :=
N−1∑
k=0

Pk(s). Since inequality (3.25) is satisfied and due to the fact that equation

(3.26) holds, we can assure that∣∣∣∣∣∣∣ 1
Nδ

N−1∑
k=0

∫ δ

0
f (x+ τk + s) dx − P (s)

∣∣∣∣∣∣∣ < ϵ3 . (3.27)

Noting that f is uniformly continuous and that

|(x+ τk + s)− (τk + s)| = |x| < δ

for every k ∈ {0, . . . ,N − 1} and x ∈]0,δ[, we can see that

|f (x+ τk + s)− f (τk + s)| < ϵ
3
,

consequently, we get∣∣∣∣∣∣ 1
δ

∫ δ

0
f (x+ τk + s) dx − f (τk + s)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
δ

∫ δ

0
(f (x+ τk + s)− f (τk + s)) dx

∣∣∣∣∣∣
≤ 1
δ

∫ δ

0
|f (x+ τk + s)− f (τk + s)| dx

<
1
δ

∫ δ

0

ϵ
3
dx =

ϵ
3
.

Taking into account that

|f (τk + s)− f (s)| ≤ ϵ
3

due to the fact that τk ∈ E ϵ
3 ,f

for each k ∈ {0, . . . ,N − 1}, it follows that∣∣∣∣∣∣ 1
δ

∫ δ

0
f (x+ τk + s) dx − f (s)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
δ

∫ δ

0
f (x+ τk + s) dx − f (s) + f (τk + s)− f (τk + s)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
δ

∫ δ

0
f (x+ τk + s) dx − f (τk + s)

∣∣∣∣∣∣+ |f (τk + s)− f (s)|

<
ϵ
3

+
ϵ
3

=
2ϵ
3
.

Therefore one has∣∣∣∣∣∣∣ 1
Nδ

N−1∑
k=0

∫ δ

0
f (x+ τk + s) dx − f (s)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ 1
N

N−1∑
k=0

(
1
δ

∫ δ

0
f (x+ τk + s) dx − f (s)

)∣∣∣∣∣∣∣
≤ 1
N

N−1∑
k=0

∣∣∣∣∣∣1δ
∫ δ

0
f (x+ τk + s) dx − f (s)

∣∣∣∣∣∣
<

1
N

N−1∑
k=0

2ϵ
3

=
2ϵ
3
.

Hence, using the previous inequality and inequality (3.27), we conclude that

|f (s)− P (s)| =

∣∣∣∣∣∣∣f (s)− P (s) +
1
Nδ

N−1∑
k=0

∫ δ

0
f (x+ τk + s) dx − 1

Nδ

N−1∑
k=0

∫ δ

0
f (x+ τk + s) dx

∣∣∣∣∣∣∣
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≤

∣∣∣∣∣∣∣ 1
Nδ

N−1∑
k=0

∫ δ

0
f (x+ τk + s) dx − f (s)

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣ 1
Nδ

N−1∑
k=0

∫ δ

0
f (x+ τk + s) dx − P (s)

∣∣∣∣∣∣∣
<

2ϵ
3

+
ϵ
3

= ϵ,

that is,

sup
x∈R
|f (x)− P (x)| ≤ ϵ

as we wanted to prove.

We finish this chapter by observing the most important results that we obtained so

far, that is, any u.a.p. function has three equivalent definitions.

Theorem 3.5.4. Let f : R→K be a function. Then the following statements are equivalent.

1. f ∈U (R);

2. f ∈N (R);

3. f ∈ AP (R).

Proof. Applying Theorems 3.1.4 and 3.1.5, we can assure that f ∈ U (R) if and only if

f ∈ N (R). Taking account Theorems 3.5.2 and 3.5.3, we have f ∈ U (R) if and only if

f ∈ AP (R), consequently, we have the equivalence between the statements as we wanted

to prove.
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4

Fourier Transform on the Space L2

In this chapter we are going to start by studying the Lp(R) spaces with p ∈ [1,+∞]. Fol-

lowing that we will define the Fourier Transform in L1(R), and after analysing some

important properties of it we will be able to extend this definition to the space L2(R).

4.1 Lp Spaces and Step Functions

Definition 4.1.1. Let f : R→ C be a measurable function and p ∈ [1,+∞[. We say that

f ∈ Lp(R) if, and only if, ∫ +∞

−∞
|f (x)|p dx < ∞,

and we define its norm by

∥f ∥Lp(R) :=
(∫ +∞

−∞
|f (x)|p dx

) 1
p

.

If p =∞, then we say that f ∈ L∞(R) if, and only if,

esssup
x∈R

|f (x)| := inf {t > 0 : µ({x ∈ R : |f (x)| > t}) = 0} <∞,

and we define its norm as

∥f ∥L∞(R) := esssup
x∈R

|f (x)|.

In this work, given p ∈ [1,+∞], we will denote ∥f ∥Lp(R) by ∥f ∥p. It is important to observe

that, in these spaces, we consider that two functions are the same if they are identical

almost everywhere.

Definition 4.1.2. Let f : R→ C be a function. We say that f is a simple function if and

only if f takes on only finitely many values, that is, if there exist {λ1, . . . ,λn} ⊆ C \ {0} and

measurable sets E1, . . . ,En ⊆ R such that

f = λ1χE1
+ · · ·+λnχEn ,
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where

χE(x) :=

1, if x ∈ E,
0, if x ∈ R \E.

is the characteristic function of a set E ⊆ R.

Definition 4.1.3. Let f : R→ C be a function, {α1, . . . ,αn} ⊆ C \ {0} and I1, . . . , In intervals

of R, with n ∈ N. We say that f is a step function if, and only if,

f = α1χI1 + · · ·+αnχIn ,

where χE is the characteristic function of a set E.

Analyzing both of the previous definitions we can see immediately that every step

function is a simple function. For p = 1, the following result is proved in [2, Theorem 3.47].

For 1 < p <∞, the proof is analogous.

Theorem 4.1.4. Let p ∈ [1,+∞[. If f ∈ Lp(R), then for every ϵ > 0 there exists a step function
g ∈ Lp(R) such that ∥f − g∥p < ϵ.

Proof. Let ϵ > 0, consider without loss of generality, f : R → [0,+∞[ and suppose that

f ∈ Lp(R), where p ≥ 1. Applying Theorem [2, Theorem 2.89], there exists a sequence of

simple functions (ϕn)n∈N, such that for each x ∈ R and for every k ∈ N, one has

lim
n→+∞

ϕn(x) = f (x)

and also

|ϕk(x)| ≤ |ϕk+1(x)| ≤ |f (x)|. (4.1)

Due to the fact that f ∈ Lp(R) and (ϕn) is a sequence of functions that satisfies inequal-

ity (4.1), we get that ϕn ∈ Lp(R) for every n ∈ N. Taking into account that these simple

functions form a sequence that verifies inequality (4.1), we can assure that for any x ∈ R,

|f (x)−ϕn(x)|p ≤ 2p(|f (x)|p + |ϕn(x)|p) ≤ 2p+1|f (x)|p.

Moreover, |f |p ∈ L1(R) because f ∈ Lp(R). Using the Dominated Convergence Theorem [2,

Theorem 3.31], we get that

lim
n→+∞

∫ +∞

−∞
|f (x)−ϕn(x)|p dx = 0,

and we conclude that simple functions are dense on Lp(R). Consequently given ϵ > 0,

we can assure that there exist measurable subsets A1, . . . ,An of R and nonzero complex

numbers a1, . . . , an such that µ(Ak) < ∞ for each k ∈ {1, . . . ,n}, where µ(A) denotes the

Lebesgue measure of any set A, and also∥∥∥∥∥∥∥f −
n∑
k=1

akχAk

∥∥∥∥∥∥∥
p

<
ϵ
2
.
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For each k ∈ {1, . . . ,n}, there is an open subsetGk ofR that containsAk and whose Lebesgue

measure is as close as we want to µ(Ak). Each open subset of R, including each Gk , is a

countable union of disjoint open intervals (see, e.g, [1, Theorem 3.11]). Thus for each

k, there exists a set Ek that is a finite union of bounded open intervals contained in Gk
whose Lebesgue measure is as close as we want to µ(Gk). Hence for each k, there is a set

Ek that is a finite union of bounded intervals such that

µ(Ek \Ak) +µ(Ak \Ek) ≤ µ(Gk \Ak) +µ(Gk \Ek) <
(

ϵ
2|ak |n

)p
,

that is,

∥χAk −χEk∥p =
(∫ +∞

−∞
|χAk (x)−χEk (x)|p dx

) 1
p

= (µ(Ek \Ak) +µ(Ak \Ek))
1
p <

ϵ
2|ak |n

.

Therefore applying Minkowski’s Theorem [2, Theorem 7.14], we have∥∥∥∥∥∥∥f −
n∑
k=1

akχEk

∥∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥∥f −
n∑
k=1

akχAk

∥∥∥∥∥∥∥
p

+

∥∥∥∥∥∥∥
n∑
k=1

akχAk −
n∑
k=1

akχEk

∥∥∥∥∥∥∥
p

<
ϵ
2

+
n∑
k=1

|ak | ∥χAk −χEk∥p

< ϵ,

and we conclude that for every ϵ > 0, there exists a step function g =
n∑
k=1

akχEk ∈ L
p(R)

such that ∥f − g∥p < ϵ.

As a consequence of the previous theorem, in the next result we will be able to prove

that, in fact, the space Lp(R)∩Lq(R) is dense in Lp(R) for each p,q ∈ [1,+∞[.

Corollary 4.1.5. Let p,q ∈ [1,+∞[. Then the space Lq(R)∩Lp(R) is dense on Lp(R).

Proof. Let f ∈ Lp(R) and let ϵ > 0. Then, applying the previous theorem, there exists a

step function g ∈ Lp(R) such that

∥f − g∥p < ϵ.

Taking into account that g ∈ Lq(R) for each q ∈ [1,+∞[ because g is a step function, we get

that g ∈ Lq(R)∩Lp(R) for every q ∈ [1,+∞[, and we conclude that the space Lq(R)∩Lp(R)

is dense on Lp(R) for each q ∈ [1,+∞[ as we wanted to prove.

We finish this section with two preparatory results that will help us to establish Theo-

rem 4.4.3.

Theorem 4.1.6. Let p ∈ [1,∞[ and consider f ∈ Lp(R). Then the function

Φ(t) := ∥f − T−tf ∥p

is bounded and uniformly continuous on R.
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Proof. Let f ∈ Lp(R). Then there exists M1 ∈ R such that(∫ +∞

−∞
|f (x)|p dx

) 1
p

≤M1,

and since ∫ +∞

−∞
|f (x)|p dx =

∫ +∞

−∞
|f (x+λ)|p dx

for every λ ∈ R, it follows that the translation function Tλf ∈ Lp(R) for each λ ∈ R. Apply-

ing Minkowski’s Theorem [2, Theorem 7.14], we have that

Φ(t) =
(∫ +∞

−∞
|f (x)− f (x − t)|p dx

) 1
p

≤
(∫ +∞

−∞
|f (x)|p dx

) 1
p

+
(∫ +∞

−∞
|f (x − t)|p dx

) 1
p

=
(∫ +∞

−∞
|f (x)|p dx

) 1
p

+
(∫ +∞

−∞
|f (y)|p dy

) 1
p

≤ (M1 +M1) =:M2

for every t ∈ R, that is, Φ is a bounded function.

Let a,b ∈ R be such that a < b and consider the function

φ(t) := ∥χ[a,b] − T−tχ[a,b]∥p,

for each t ∈ R. Let us suppose that s, t ∈ R with s < t. Then

|φ(t)−φ(s)| = | ∥χ[a,b] − T−tχ[a,b]∥p − ∥χ[a,b] − T−sχ[a,b]∥p |

≤ ∥T−tχ[a,b] − T−sχ[a,b]∥p

=
(∫ +∞

−∞
|χ[a,b](x − t)−χ[a,b](x − s)|p dx

) 1
p

=
(∫ b+t

a+s
|χ[a+t,b+t](x)−χ[a+s,b+s](x)|p dx

) 1
p

=


(2(b − a))

1
p , if b+ s ≤ a+ t,

(2(t − s))
1
p , if a+ t < b+ s,

≤ 2
1
p (t − s)

1
p . (4.2)

For ϵ1 > 0, put δ1 := ϵ
p
1

2 . If 0 ≤ t − s < δ1, then it follows from (4.2) that

|φ(t)−φ(s)| ≤ 2
1
p (t − s)

1
p < 2

1
p δ

1
p

1 ≤ ϵ1,

therefore we conclude that φ is uniformly continuous on R.
Now let ai < bi for each i ∈ {1, . . . ,n} with n ∈ N, let {λ1, . . . ,λn} ⊆ C, and consider the

function

ϕ(t) :=

∥∥∥∥∥∥∥
n∑
i=1

λiχ[ai ,bi ] − T−t

 n∑
i=1

λiχ[ai ,bi ]


∥∥∥∥∥∥∥
p

,
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for each t ∈ R. If s < t, then as before one has

|ϕ(t)−ϕ(s)| ≤

∥∥∥∥∥∥∥T−t
 n∑
i=1

λiχ[ai ,bi ]

− T−s
 n∑
i=1

λiχ[ai ,bi ]


∥∥∥∥∥∥∥
p

=

∫ +∞

−∞

∣∣∣∣∣∣∣
n∑
i=1

λiχ[ai ,bi ](x − t)−
n∑
i=1

λiχ[ai ,bi ](x − s)

∣∣∣∣∣∣∣
p

dx


1
p

≤
n∑
i=1

|λi | ∥T−tχ[ai ,bi ] − T−sχ[ai ,bi ]∥p. (4.3)

Let ϵ2 > 0 and let

δ2 :=

1 +
n∑
i=1

|λi |

−p ϵp22 .
If 0 ≤ t − s < δ2, then it follows from (4.2) and (4.3) that

|ϕ(t)−ϕ(s)| ≤
n∑
i=1

|λi |2
1
p (t − s)

1
p

<

 n∑
i=1

|λi |

2
1
p δ

1
p

2

≤

 n∑
i=1

|λi |


1 +

n∑
i=1

|λi |

−1

2
1
p
ϵ2

2
1
p

< ϵ2,

consequently, ϕ is uniformly continuous on R. Therefore the function

ψg : R→ R, t 7→ ∥g − T−tg∥p

is uniformly continuous on R, for every step function g.

Let ϵ3 > 0. Applying Theorem 4.1.4, there exists a step function g ∈ Lp(R) such that

∥f − g∥p <
ϵ3

3
.

Taking into account inequality (4.3), there is δ3 > 0 such that for all x,y ∈ R, one has

|x − y| < δ3⇒ ∥T−xg − T−yg∥p <
ϵ3

3
.

Hence if x,y ∈ R satisfy |x − y| < δ3, then we get that

|Φ(x)−Φ(y)| =
∣∣∣∥f − T−xf ∥p − ∥f − T−yf ∥p∣∣∣
≤ ∥T−yf − T−xf ∥p
= ∥T−yf − T−yg + T−yg − T−xg + T−xg − T−xf ∥p
≤ ∥T−yf − T−yg∥p + ∥T−yg − T−xg∥p + ∥T−xg − T−xf ∥p
= ∥f − g∥p + ∥T−yg − T−xg∥p + ∥f − g∥p

<
ϵ3

3
+
ϵ3

3
+
ϵ3

3
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= ϵ3,

and we can conclude that the function Φ is uniformly continuous on R as we wanted to

prove.

Lemma 4.1.7. Let us suppose that Φ : R→ R+ is a bounded uniformly continuous function
and let p ∈ [1,+∞[. Then the function Ψ := Φp is bounded and uniformly continuous on R.

Proof. Since Φ is a bounded function, it follows immediately that Ψ is also a bounded

function. Let x,y ∈ R+. Then, applying the Lagrange theorem (see, e.g., [1, Theorem 5.16]),

there exists ξ ∈ [min{x,y},max{x,y}], such that

|xp − yp| = pξp−1|x − y|.

Consequently, one has

|xp − yp| ≤ p(max{x,y})p−1|x − y|. (4.4)

Let ϵ > 0. Since Φ is uniformly continuous, there exists δ > 0 such that for every s, t ∈ R,
one has

|s − t| < δ⇒ |Φ(s)−Φ(t)| < ϵ

p

sup
ξ∈R

Φ(ξ)

p−1 . (4.5)

It is important to observe that sup
ξ∈R

Φ(ξ) is a finite value because Φ is a bounded function.

Taking into account inequalities (4.4) and (4.5), we see that if |s − t| < δ, then

|Ψ (s)−Ψ (t)| = |(Φ(s))p − (Φ(t))p|

≤ p(max{Φ(s),Φ(t)})p−1|Φ(s)−Φ(t)|

≤ p
sup
ξ∈R

Φ(ξ)

p−1

|Φ(s)−Φ(t)| < ϵ,

that is, Ψ is uniformly continuous on R.

4.2 Proprieties of the Fourier Transform on L1

We start this section by presenting the definition of the Fourier transform in L1(R).

Definition 4.2.1. Let f ∈ L1(R). We define the Fourier transform of f by the function

f̂ : R→ C, such that

f̂ (t) :=
∫ ∞
−∞
f (x)e−2πitx dx

for each t ∈ R.

In the following example, we will analyse the behaviour of the Fourier transform of

the characteristic function.
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Example 4.2.2. Let a,b ∈ R, let [a,b] ⊂ R and consider the characteristic function χ[a,b].

We can guarantee that χ[a,b] ∈ L1(R) and

χ̂[a,b](t) =
∫ +∞

−∞
χ[a,b](x)e−2πitx dx =

∫ b

a
e−2πitx dx

=


b − a, if t = 0,

e−2πibt−e−2πiat

−2πit , if t , 0.

Figure 4.1: χ̂[−1,4](t), t ∈ [10,20].

Now we will see that the Fourier transform of a L1(R) function is uniformly continuous

in R.

Theorem 4.2.3 ([2, Theorem 11.49]). If f ∈ L1(R), then f̂ is uniformly continuous on R and

||f̂ ||∞ ≤ ||f ||1, lim
|t|→∞

f̂ (t) = 0.

Proof. Let x,y ∈ R. Since |e−2πiyx| = 1, it follows that

|f̂ (t)| =
∣∣∣∣∣∫ +∞

−∞
f (x)e−2πitx dx

∣∣∣∣∣ ≤ ∫ +∞

−∞
|f (x)| dx = ||f ||1

for any t ∈ R, consequently we get that ||f̂ ||∞ ≤ ||f ||1. Given t,h ∈ R, we have that

|f̂ (t + h)− f̂ (t)| =
∣∣∣∣∣∫ +∞

−∞
f (x)e−2πi(t+h)x − f (x)e−2πitx dx

∣∣∣∣∣
≤

∫ +∞

−∞
|f (x)| |e−2πihx − 1| dx.

Let (hn)n∈N be a sequence of real numbers such that lim
n→+∞

hn = 0 and consider the function

ϕn(x) = |f (x)| |e−2πihnx − 1|,

for each x ∈ R and n ∈ N. In these conditions we can assure that ϕn ∈ L1(R) for any n ∈ N
because f ∈ L1(R) and, using the previous equality, we have for every n ∈ N and x ∈ R,

lim
n→+∞

ϕn(x) = 0, |ϕn(x)| ≤ 2 |f (x)|.
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Consequently applying the Dominated Convergence Theorem [2, Theorem 3.31], it fol-

lows that

lim
n→+∞

∫ +∞

−∞
|f (x)| |e−2πihnx − 1| dx = 0.

Due to the fact that

0 ≤ |f̂ (t + h)− f̂ (t)| ≤
∫ +∞

−∞
|f (x)| |e−2πihx − 1| dx

for every t,h ∈ R, we can assure that

lim
n→+∞

|f̂ (t + hn)− f̂ (t)| = 0,

that is, f̂ is a uniformly continuous function. Taking into account Example 4.2.2 if

[a,b] ⊂ R, then we can guarantee that

lim
|t|→∞

χ̂[a,b](t) = 0. (4.6)

Taking into account Theorem 4.1.4, there exists a sequence (fn)n∈N of step functions in

L1(R), which imply by the previous arguments that each of the functions f̂ is uniformly

continuous, such that

lim
k→∞
||f − fk ||1 = 0,

hence, due to the fact ∥f̂ ∥∞ ≤ ∥f ∥1 we have

lim
k→∞
||f̂ − f̂k ||∞ = 0.

In these conditions we can guarantee that the sequence (f̂k)k∈N is a sequence of uniformly

continuous functions that converges uniformly in R to f̂ . Taking into account equation

(4.6) and the fact that the uniform limit of uniformly continuous functions in R each of

which has limit 0 when |t| → +∞ also has limit 0 when |t| → +∞, we can conclude that

lim
|t|→∞

f̂ (t) = 0,

as we wanted to prove.

In the following theorem, we establish some algebraic properties of the Fourier trans-

form.

Theorem 4.2.4 ([2, Theorem 11.55]). Let f ,h ∈ L1(R) and λ,t ∈ R. Then the following
proprieties hold.

1. If g(x) = f (x −λ) for every x ∈ R, then ĝ(t) = f̂ (t)e−2πiλt.

2. If g(x) = e2πiλxf (x) for any x ∈ R, then ĝ(t) = f̂ (t −λ).

3. If λ , 0 and g(x) = f (λx) for each x ∈ R, then ĝ(t) = 1
|λ| f̂

(
t
λ

)
.
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4. If α,β ∈ C and g(x) = αf (x) + βh(x) for every x ∈ R, then ĝ(t) = αf̂ (t) + βĥ(t).

5. If g(x) = f (x) for any x ∈ R, then ĝ(t) = f̂ (−t).

Proof. If g(x) = f (x −λ) for every x ∈ R, then

ĝ(t) =
∫ +∞

−∞
g(x)e−2πitx dx =

∫ +∞

−∞
f (x −λ)e−2πitx dx

=
∫ +∞

−∞
f (y)e−2πit(y+λ) dy = e−2πiλt

∫ +∞

−∞
f (x)e−2πitx dx

= f̂ (t)e−2πiλt .

If g(x) = e2πiλxf (x) for any x ∈ R, then

ĝ(t) =
∫ +∞

−∞
g(x)e−2πitx dx =

∫ +∞

−∞
f (x)e2πiλxe−2πitx dx

=
∫ +∞

−∞
f (x)e−2πix(t−λ) dx = f̂ (t −λ).

If λ , 0 and g(x) = f (λx) for each x ∈ R, then

ĝ(t) =
∫ +∞

−∞
g(x)e−2πitx dx =

∫ +∞

−∞
f (λx)e−2πitx dx

=
1
|λ|

∫ +∞

−∞
f (y)e

−2πity
λ dy =

1
|λ|
f̂
( t
λ

)
.

If α,β ∈ C and g(x) = αf (x) + βh(x) for every x ∈ R, then

ĝ(t) =
∫ +∞

−∞
g(x)e−2πitx dx =

∫ +∞

−∞
(αf (x) + βh(x))e−2πitx dx

= α
∫ +∞

−∞
f (x)e−2πitx dx+ β

∫ +∞

−∞
h(x)e−2πitx dx = αf̂ (t) + βĥ(t).

If g(x) = f (x) for any x ∈ R, then

ĝ(t) =
∫ +∞

−∞
g(x)e−2πitx dx =

∫ +∞

−∞
f (x)e−2πitx dx

=
∫ +∞

−∞
f (x)e2πitx dx = f̂ (−t).

We finish this section by verifying that the integral, in R, of the product between the

Fourier transform of a function and other function, is equal to the integral, in R, of the

product of the former function and the Fourier transform of the latter function.

Theorem 4.2.5 ([2, Theorem 11.59]). If f ,g ∈ L1(R), then∫ +∞

−∞
f̂ (t)g(t) dt =

∫ +∞

−∞
f (t)ĝ(t) dt.
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Proof. Since f ,g ∈ L1(R), applying Theorem 4.2.3, it follows that f̂ , ĝ ∈ L∞(R), therefore

both integrals are well defined. Taking into account the definition of the Fourier Trans-

form, Tonelli’s Theorem [2, Theorem 5.28] and Fubini’s Theorem [2, Theorem 5.32], we

can assure that ∫ +∞

−∞
f̂ (t)g(t) dt =

∫ +∞

−∞
g(t)

∫ +∞

−∞
f (x)e−2πitx dx dt

=
∫ +∞

−∞
f (x)

∫ +∞

−∞
g(t)e−2πitx dt dx

=
∫ +∞

−∞
f (x)ĝ(x) dx =

∫ +∞

−∞
f (t)ĝ(t) dt.

4.3 Convolution and Fourier Transform

We start this section by recalling the definition of convolution between two functions.

Definition 4.3.1. Let f ,g : R→ C be measurable functions. We define the convolution of

f and g by

(f ∗ g)(t) :=
∫ +∞

−∞
f (x)g(t − x) dx,

for every t ∈ R for which the integral is defined. Analysing the definition of convolution

we can see that f ∗ g = g ∗ f .

In the next result, we will prove that the norm, in Lp(R), of the convolution between a

L1(R) function and a Lp(R) function is always less or equal to the product between their

corresponding norms.

Theorem 4.3.2 ([2, Theorem 11.64]). Let f ∈ L1(R) and g ∈ Lp(R), with p ∈ [1,+∞]. In these
conditions we can guarantee that f ∗ g is defined for almost every x ∈ R and

||f ∗ g ||p ≤ ||f ||1||g ||p.

Proof. For every p ≥ 1 and y ∈ R, we have∫ +∞

−∞
|f (y)| |g(x − y)|p dx = |f (y)|

∫ +∞

−∞
|g(x − y)|p dx = |f (y)| ||g ||pp <∞,

and, moreover, ∫ +∞

−∞
|f (y)| dy

∫ +∞

−∞
|g(x − y)|p dx = ||f ||1||g ||

p
p <∞.

Let p = 1. Applying Fubini’s Theorem [2, Theorem 5.32] we can guarantee that

||f ∗ g ||1 =
∫ +∞

−∞
|(f ∗ g)(x)| dx

=
∫ +∞

−∞

∣∣∣∣∣∫ +∞

−∞
f (t)g(x − t) dt

∣∣∣∣∣ dx
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≤
∫ +∞

−∞

∫ +∞

−∞
|f (t)g(x − t)| dt dx

=
∫ +∞

−∞

∫ +∞

−∞
|f (t)| |g(x − t)| dx dt

=
∫ +∞

−∞
|f (t)|

∫ +∞

−∞
|g(x − t)| dx dt

=
∫ +∞

−∞
|f (t)|

∫ +∞

−∞
|g(y)| dy dt

=
(∫ +∞

−∞
|f (t)| dt

)(∫ +∞

−∞
|g(y)| dy

)
= ||f ||1||g ||1.

Put p =∞. In these conditions we can assure that

|(f ∗ g)(x)| =
∣∣∣∣∣∫ +∞

−∞
f (t)g(x − t) dt

∣∣∣∣∣
≤

∫ +∞

−∞
|f (t)| |g(x − t)| dt

≤ esssup
y∈R

|g(y)|
∫ +∞

−∞
|f (t)| dt

= ||g ||∞||f ||1,

consequently we have

||f ∗ g ||∞ ≤ ||f ||1||g ||∞.

Let p,q ∈]1,+∞[ be such that p−1 + q−1 = 1. Using Hölder’s inequality [2, Theorem 7.9] it

follows that

|(f ∗ g)(x)| =
∣∣∣∣∣∫ +∞

−∞
f (t)g(x − t) dt

∣∣∣∣∣
≤

∫ +∞

−∞
|f (t)| |g(x − t)| dt

=
∫ +∞

−∞
|f (t)|

1
q |f (t)|

1
p |g(x − t)| dt

≤
(∫ +∞

−∞
|f (t)| dt

) 1
q
(∫ +∞

−∞
|f (t)| |g(x − t)|p dt

) 1
p

= ||f ||
1
q

1

(∫ +∞

−∞
|f (t)| |g(x − t)|p dt

) 1
p

.

Applying the previous inequality and Fubini’s Theorem [2, Theorem 5.32] we have∫ +∞

−∞
|(f ∗ g)(x)|p dx ≤ ||f ||

p
q

1

∫ +∞

−∞

∫ +∞

−∞
|f (t)| |g(x − t)|p dt dx

= ||f ||
p
q

1

∫ +∞

−∞
|f (t)|

∫ +∞

−∞
|g(x − t)|p dx dt

= ||f ||
p
q

1

∫ +∞

−∞
|f (t)|

∫ +∞

−∞
|g(y)|p dy dt

60



4.4. PLANCHEREL’S THEOREM

= ||f ||
p
q

1

(∫ +∞

−∞
|f (t)| dt

)(∫ +∞

−∞
|g(y)|p dy

)
= ||f ||

p
q

1 ||f ||1 ||g ||
p
p

= ||f ||
p
q+1
1 ||g ||pp

= ||f ||p1 ||g ||
p
p

that is, ||f ∗ g ||p ≤ ||f ||1||g ||p, as we wanted to prove.

Taking into account the definition of the Fourier transform and convolution, in the

following theorem we can see that the Fourier transform of the convolution of two L1(R)

functions, is equal to the product of their corresponding Fourier transforms.

Theorem 4.3.3 ([2, Theorem 11.66]). If f ,g ∈ L1(R), then

(̂f ∗ g)(t) = f̂ (t)ĝ(t),

for each t ∈ R.

Proof. Let t ∈ R. Applying Fubini’s Theorem [2, Theorem 5.32] we can assure that

(̂f ∗ g)(t) =
∫ +∞

−∞
(f ∗ g)(x)e−2πitx dx

=
∫ +∞

−∞

∫ +∞

−∞
f (y)g(x − y)e−2πitx dy dx

=
∫ +∞

−∞

∫ +∞

−∞
f (y)g(x − y)e−2πit(x−y+y) dx dy

=
∫ +∞

−∞
f (y)e−2πity

∫ +∞

−∞
g(x − y)e−2πit(x−y) dx dy

=
∫ +∞

−∞
f (y)e−2πity

∫ +∞

−∞
g(z)e−2πitz dz dy

=
(∫ +∞

−∞
f (y)e−2πity dy

)(∫ +∞

−∞
g(z)e−2πitz dz

)
= f̂ (t)ĝ(t).

4.4 Plancherel’s Theorem

We present now the definition of the Poisson kernel and the Poisson integral, which will

play an important role in order to establish that the Fourier transform preserves L2(R)

norms.

Definition 4.4.1. Let y > 0. We define the Poisson kernel Py : R→]0,+∞[ by

Py(x) :=
y

π(x2 + y2)
.
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In these conditions we have∫ +∞

−∞
|Py(x)| dx =

[
π−1 arctan

(
x
y

)]+∞

−∞
= 1,

therefore we can assure that Py ∈ L1(R).

Definition 4.4.2. Let f ∈ Lp(R) and y > 0, where p ∈ [1,+∞]. We define the Poisson

integral Pyf : R→ C by

(Pyf )(t) :=
∫ +∞

−∞
f (x)Py(t − x) dx,

for any t ∈ R. Analysing the definition of Pyf we can see that Pyf = f ∗ Py .

In the following theorem, we are going to check that the Poisson integral of a function

in Lp(R) gives us a good approximation to that function.

Theorem 4.4.3 ([2, Theorem 11.74]). If p ∈ [1,+∞[ and f ∈ Lp(R), then

lim
y↓0
||f −Pyf ||p = 0.

Proof. Let x ∈ R and y > 0. Applying Hölder’s inequality [2, Theorem 7.9], using the

definition of the Poisson integral and using the fact that∫ +∞

−∞
Py(x) dx = 1,

we have that

|f (x)− (Pyf )(x)| =
∣∣∣∣∣∫ +∞

−∞
f (x)Py(t) dt −

∫ +∞

−∞
f (x − t)Py(t) dt

∣∣∣∣∣
=

∣∣∣∣∣∫ +∞

−∞
[f (x)− f (x − t)]Py(t) dt

∣∣∣∣∣
≤

∫ +∞

−∞
|f (x)− f (x − t)|Py(t) dt

≤
(∫ +∞

−∞
|f (x)− f (x − t)|pPy(t) dt

) 1
p
(∫ +∞

−∞
1qPy(t) dt

) 1
q

=
(∫ +∞

−∞
|f (x)− f (x − t)|pPy(t) dt

) 1
p

,

where p−1 + q−1 = 1 and the second inequality comes from applying Hölder’s inequality

[2, Theorem 7.9] to the measure dµ = Py(t) dt defined by

µ(E) :=
∫
E
Py(t) dt

for any measurable set E ⊆ R. Consider the function g : R→ [0,+∞[, defined by

g(t) =
∫ +∞

−∞
|f (x)− f (x − t)|p dx
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for each t ∈ R. In these conditions we have

g(0) =
∫ +∞

−∞
|f (x)− f (x)|p dx = 0.

Taking into account Theorem 4.1.6 and Lemma 4.1.7, we can guarantee that the function

g is bounded and uniformly continuous on R. Since Py is an even function, due to the fact

that

|f (x)− (Pyf )(x)| ≤
(∫ +∞

−∞
|f (x)− f (x − t)|pPy(t) dt

) 1
p

,

and using Fubini’s Theorem [2, Theorem 5.32], it follows that

||f −Pyf ||
p
p ≤

∫ +∞

−∞

∫ +∞

−∞
|f (x)− f (x − t)|pPy(t) dt dx

=
∫ +∞

−∞
Py(t)

∫ +∞

−∞
|f (x)− f (x − t)|p dx dt

=
∫ +∞

−∞
Py(−t)g(t) dt = (Pyg)(0). (4.7)

Let ϵ > 0. Since g is a uniformly continuous function on R, there exists δ > 0 such that for

every x1,x2 ∈ R,

|x1 − x2| < δ ⇒ |g(x1)− g(x2)| < ϵ.

Consider z ∈ R. Analyzing the definition of the Poisson kernel and using the fact that∫ +∞

−∞
Py(x) dx = 1,

we get that

|g(z)− (Pyg)(z)| =
∣∣∣∣∣g(z)−

∫ +∞

−∞
g(t)Py(z − t) dt

∣∣∣∣∣
=
∣∣∣∣∣∫ +∞

−∞
g(z)Py(z − t) dt −

∫ +∞

−∞
g(t)Py(z − t) dt

∣∣∣∣∣
≤
∫ +∞

−∞
|g(z)− g(t)|Py(z − t) dt

=
∫
{x∈R:|z−x|<δ}

|g(z)− g(t)|Py(z − t) dt

+
∫
{x∈R:|z−x|≥δ}

|g(z)− g(t)|Py(z − t) dt

< ϵ

∫
{x∈R:|z−x|<δ}

Py(z − t) dt

+ 2 ||g ||∞
∫
{x∈R:|z−x|≥δ}

Py(z − t) dt.

In these conditions we have

lim
y↓0

∫
{x∈R:|z−x|<δ}

Py(z − t) dt =lim
y↓0

∫ z+δ

z−δ
Py(z − t) dt
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=lim
y↓0

∫ δ

−δ
Py(x) dx

=lim
y↓0

[
1
π

arctan
(
x
y

)]δ
−δ

= 1

and

lim
y↓0

∫
{x∈R:|z−x|≥δ}

Py(z − t) dt =lim
y↓0

∫ z−δ

−∞
Py(z − t) dt + lim

y↓0

∫ +∞

z+δ
Py(z − t) dt

=lim
y↓0

∫ +∞

δ
Py(x) dx+ lim

y↓0

∫ −δ
−∞

Py(x) dx

=lim
y↓0

[
1
π

arctan
(
x
y

)]+∞

δ

+ lim
y↓0

[
1
π

arctan
(
x
y

)]−δ
−∞

= 0.

Using the previous statements, we have

lim
y↓0
|g(z)− (Pyg)(z)| < ϵ,

consequently, Pyg converges pointwise on R to the function g as y ↓ 0. Hence we get

lim
y↓0

(Pyg)(0) = g(0),

and due to the fact that g(0) = 0, we have lim
y↓0

(Pyg)(0) = 0. Taking into account inequality

(5.6), we get

lim
y↓0
||f −Pyf ||

p
p ≤ lim

y↓0
(Pyg)(0) = 0,

therefore

lim
y↓0
||f −Pyf ||p = 0

as we wanted to prove.

The following example is an immediate consequence of the Fourier transform and its

algebraic properties, and will be used in the proof of Theorems 4.4.5 and 4.5.4.

Example 4.4.4. Let f (x) = e−2π|x| for every x ∈ R. Given t ∈ R, we have

f̂ (t) =
∫ +∞

−∞
e−2π|x|e−2πitx dx

=
∫ 0

−∞
e2πx−2πitx dx+

∫ +∞

0
e−2πx−2πitx dx

=
1

2π(1− it)
+

1
2π(1 + it)

=
1

π(1 + t2)
.

64



4.4. PLANCHEREL’S THEOREM

Consider now gy(x) = e−2πy|x| and hy,z(x) = e2πizx−2πy|x| for each x,z ∈ R and y > 0. Apply-

ing the previous equality and Theorem 4.2.4, we get

ĝy(t) =
1

yπ
(
1 +

(
t
y

)2
) =

y

π(t2 + y2)
,

consequently using Theorem 4.2.4 it follows that

ĥy,z(t) =
π−1y

y2 + (t − z)2 .

The next result shows us that if we apply the Fourier transform to a function four

times, then we go back to the original function.

Theorem 4.4.5 ([2, Theorem 11.76]). Let f ∈ L1(R) be such that f̂ ∈ L1(R). Then

f (x) =
∫ +∞

−∞
f̂ (t)e2πixt dt = (̂f̂ )(−x)

for almost every x ∈ R.

Proof. Let x ∈ R, y > 0 and gx,y(t) := e2πixt−2πy|t|. Taking into account Example 4.4.4 and

applying Theorem 4.2.5, we get

(Pyf )(x) =
∫ +∞

−∞
f (t)Py(x − t) dt

=
∫ +∞

−∞
f (t)

yπ−1

(x − t)2 + y2 dt

=
∫ +∞

−∞
f (t)ĝx,y(t) dt

=
∫ +∞

−∞
f̂ (t)gx,y(t) dt

=
∫ +∞

−∞
f̂ (t)e2πixt−2πy|t| dt.

Due to the fact that f̂ ∈ L1(R) and using the Dominated Convergence Theorem [2, Theo-

rem 3.31], we have for every x ∈ R,

lim
y↓0

∫ +∞

−∞
f̂ (t)e2πixt−2πy|t| dt = (̂f̂ )(−x).

Since f ∈ L1(R) and using Theorem 4.4.3, it follows that

lim
y↓0
||f −Pyf ||1 = 0.

Taking into account the previous equality, we know from [2, Theorem 7.23] that there

exists a sequence of positive numbers (yn)n∈N, such that

lim
n→∞

yn = 0, lim
n→∞

(Pynf )(x) = f (x),
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for almost every x ∈ R, consequently by the previous statements we get that

f (x) = lim
n→∞

(Pynf )(x) = lim
y↓0

(Pyf )(x) = lim
y↓0

∫ +∞

−∞
f̂ (t)e2πixt−2πy|t| dt = (̂f̂ )(−x),

for almost any x ∈ R as we wanted to prove.

The following example will be used in the proof of Theorem 4.4.7

Example 4.4.6. Let gy(x) = e−2πy|x|, for each x ∈ R and y > 0. Applying Theorem 4.4.5 and

analysing Example 4.4.4, we have

P̂y(x) = (̂ĝy)(x) = gy(−x) = e−2πy|x|.

We finish this section by establishing Plancherel’s Theorem, which states that the

Fourier transform preserves L2(R) norms.

Theorem 4.4.7 ([2, Theorem 11.82]). If f ∈ L1(R)∩L2(R), then ||f̂ ||2 = ||f ||2.

Proof. Let us suppose that f ∈ L1(R)∩L2(R) and f̂ ∈ L1(R). Consider the function g : R→
C such that g(x) = f (−x). Applying Theorem 4.2.4, we can assure that

ĝ(t) = f̂ (t)

for each t ∈ R. Using Theorems 4.2.5 and 4.4.5, it follows that

||f ||22 =
∫ +∞

−∞
f (x)f (x) dx =

∫ +∞

−∞
f (−x)f (−x) dx

=
∫ +∞

−∞
(̂f̂ )(x)g(x) dx =

∫ +∞

−∞
f̂ (x)ĝ(x) dx

=
∫ +∞

−∞
f̂ (x)f̂ (x) dx = ||f̂ ||22,

therefore the theorem is proved when f̂ ∈ L1(R). Consider now an arbitrary function

f ∈ L1(R)∩L2(R), y > 0 and x ∈ R. Taking account Theorems 4.3.2 and 4.3.3 and Example

4.4.6, we can guarantee that f ∗ Py ∈ L1(R) and

̂(f ∗ Py)(x) = f̂ (x)(̂Py)(x) = f̂ (x)e−2πy|x|. (4.8)

Applying Theorem 4.2.3, it follows that f̂ ∈ L∞(R) and also∫ +∞

−∞
|f̂ ∗ Py(x)| dx =

∫ +∞

−∞
|f̂ (x)e−2πy|x|| dx ≤ ∥f̂ ∥∞

∫ +∞

−∞
e−2πy|x| dx <∞,

which implies that f̂ ∗ Py ∈ L1(R). Applying Theorem 4.3.2 we get that Py ∗ f = f ∗ Py ∈
L1(R)∩L2(R) and since f̂ ∗ Py ∈ L1(R), using the first case it follows that

||f ∗ Py ||2 = ||f̂ ∗ Py ||2.
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Applying Theorem 4.4.3, we can assure that

lim
y↓0
∥f − f ∗ Py∥2 = 0,

which implies that

lim
y↓0
||f ∗ Py ||2 = ||f ||2.

Taking into account equation (4.8) and the Monotone Convergence Theorem [2, Theorem

3.11], we can conclude that

lim
y↓0
||f̂ ∗ Py ||2 = ||f̂ ||2,

that is, ||f ||2 = ||f̂ ||2, as we wanted to prove.

4.5 Fourier Transform on L2

Applying Corollary 4.1.5, we get that the space L1(R)∩ L2(R) is dense on L2(R). Taking

into account the previous theorem, we can extend by continuity the map f 7→ f̂ uniquely

to a bounded linear map from L2(R) to L2(R), which we will define as shown below.

Definition 4.5.1. If f ∈ L1(R)∩ L2(R), then we define the Fourier transform of f by the

bounded operator F: L2(R)→ L2(R) such that

Ff := f̂ .

If f ∈ L2(R) \L1(R), then we define the Fourier transform of f by

Ff := lim
n→+∞

f̂n,

where (fn)n∈N is a sequence in L1(R)∩L2(R) such that lim
n→+∞

||f − fn||2 = 0.

Definition 4.5.2. Let X be a Hilbert space and T : X → X be a linear bounded transfor-

mation. We say that T is a unitary operator if and only if

T T ∗ = T ∗T = I,

where T ∗ : X→ X is the only operator that satisfies ⟨T x,y⟩ = ⟨x,T ∗y⟩ for each x,y ∈ X.

Now we will recall a well-known result of Functional Analysis, which states that in a

Hilbert space, a linear bounded operator is unitary if and only if it is a surjective isometry.

Theorem 4.5.3 ([2, Theorem 10.61]). Let X be a Hilbert space and T : X → X be a linear
bounded operator. Then T is unitary if and only if T is a surjective isometry.

Proof. Suppose that T is unitary. Given x ∈ X we have

∥T x∥2 = ⟨T x,T x⟩ = ⟨x,T ∗T x⟩ = ⟨x,x⟩ = ∥x∥2,
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consequently we can assure that T is an isometry. Let y ∈ X. In these conditions there

exists x = T ∗y ∈ X such that

T x = T T ∗y = y,

that is, T is surjective.

Let us suppose now that T is a surjective isometry. Taking into account that T is

an isometry, it follows that T is injective and thus T is a bounded bijective linear map.

Consequently, applying the Bounded Inverse Theorem [2, Theorem 6.83], it follows that

T is an invertible bounded linear operator. For every x ∈ X, we have

∥T x∥2 − ∥x∥2 = ⟨T x,T x⟩ − ⟨x,x⟩ = ⟨(T ∗T − I)x,x⟩

and since T is an isometry, it follows that

⟨(T ∗T − I)x,x⟩ = 0

for each x ∈ X. We know from [2, Theorem 10.46] that ⟨(T ∗T − I)x,x⟩ = 0 for any x ∈ X
if and only if T ∗T − I = 0, that is, T ∗T = I. Taking into account the uniqueness of T −1,

T −1T = T T −1 = I and T ∗T = I, we get that T −1 = T ∗ and hence T is a unitary operator as

we wanted to prove.

With the help of the previous theorem, we finish this chapter by presenting and

proving that the Fourier transform on L2(R) is an isometry. Moreover, we also check

that the Fourier transform on L2(R) is a unitary operator and that, applying the Fourier

transform four times, we get the identity operator on L2(R).

Theorem 4.5.4 ([2, Theorem 11.87]). If F is the Fourier transform on L2(R), then the follow-
ing properties hold.

1. F is an isometry on L2(R).

2. F4 = I .

3. F is a unitary operator on L2(R).

Proof. Let f ∈ L2(R). Since Fis obtained by continuously extending, in the norm of L2(R),

the Fourier transform from L1(R)∩L2(R) to L2(R), it follows by Theorem 4.4.7 that

||Ff ||2 = ||f ||2,

that is, F is an isometry on L2(R). Consider now an arbitrary function f ∈ L1(R)∩ L2(R)

and let y > 0. In these conditions we know, by definition, that the function Py ∈ L1(R),

hence applying Theorem 4.3.2 it follows that

Py ∗ f = f ∗ Py ∈ L1(R)∩L2(R).

Due to the fact that f ∈ L1(R)∩ L2(R), applying Theorems 4.2.3 and 4.4.7 we have that

f̂ ∈ L∞(R) ∩ L2(R), and observing the definition of the Poisson kernel we know that
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Py ∈ L1(R)∩L∞(R). Consequently using Theorem 4.2.3 and analyzing Example 4.4.4, we

guarantee that P̂y ∈ L∞(R)∩L1(R) and thus, using Theorem 4.3.3, we can assure that

f̂ ∗ Py = f̂ P̂y ,

therefore applying Hölder’s inequality [2, Theorem 7.9], we have

f̂ ∗ Py = f̂ P̂y ∈ L1(R).

Due to the fact that f ∗ Py ∈ L1(R)∩L2(R), it follows, by Theorem 4.4.7, that f̂ ∗ Py ∈ L2(R)

and thus we get

f̂ ∗ Py ∈ L1(R)∩L2(R).

Since f ∗ Py , f̂ ∗ Py ∈ L1(R)∩L2(R), using Theorem 4.4.5 we have that

F4(f ∗ Py) = f ∗ Py ,

thus if we take the limit in L2(R) when y ↓ 0 in both sides of the previous equation and

observe that Pyf = f ∗ Py , then applying Theorem 4.4.3 we get F4f = f , that is, F4 = I.

Let f2 ∈ L2(R). Then there exists f1 = F3f2 ∈ L2(R) such that

f2 = Ff1,

that is, F is a surjective operator. Taking account that F is an isometry, bounded and

surjective, we can conclude, by the previous theorem that Fis a unitary operator on L2(R)

as we wanted to prove.
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5

Banach Algebras of Almost Periodic

Fourier Multipliers

In the final chapter, we start by presenting several definitions and theorems regarding

Banach algebras, maximal ideals and multiplicative linear functionals. After that, we will

define the algebra APp(R) as the closure of AP P (R) in the norm of the set of Fourier multi-

pliers, which are functions that belong to L∞(R) and satisfy certain properties. Moreover,

we also verify that APp(R) is embedded densely in AP (R). Following that, we define the al-

gebra APW (R) as the set of all trigonometric convergent series and we prove thatAPW (R)

is embedded densely not only in APp(R), but also in AP (R). In fact, we will also see that

the Banach algebra l1(R) is isometrically isomorphic to APW (R) and, with that being

done, we prove that the Gelfand space of APW (R) is homeomorphic to the Gelfand space

of AP (R). We finish this work by establishing that the algebra APp(R) is inverse-closed in

AP (R).

5.1 Basic Definitions, Banach Algebras and C*-Algebras

In this chapter, we will always consider non-null algebras over C.

Definition 5.1.1. Let D be a non empty set. We say that D is a directed set if and only

if D is a set with a partial order relation, ≤, such that for each x,y ∈ D there exists z ∈ D
that verifies

x ≤ z, y ≤ z.

Definition 5.1.2. Let (X,τ) be a topological space and D a directed set. A net on X is a

function defined by

x :D→ X, α 7→ x(α) := xα .

Definition 5.1.3. Let (X,τ) be a topological space and let (xα) be a net on X, defined on

a directed set D. We say that (xα) converges to x ∈ X, and we denote it by xα →α x, if and

only if for each neighborhood V of the element x there exists p ∈D such that

α ≥ p⇒ xα ∈ V .
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Definition 5.1.4. Let Abe a vector space over C. We say that A is an algebra if and only

if there exists a binary operation • A×A→ A such that for every x,y,z ∈ Aand for each

λ ∈ C,

1. x • (y • z) = (x • y) • z;

2. (λx) • y = x • (λy) = λ(x • y);

3. x • (y + z) = x • y + x • z;

4. (x+ y) • z = x • z+ y • z.

In this work we will denote x • y = xy for any x,y ∈ A and we will always consider that

A, {0}. We say that an algebra is commutative if it satisfies

xy = yx

for each x,y ∈ A. Moreover, we say that A is a unital algebra (or an algebra with unit) if

there exists an element e ∈A such that

ea = ae = a

for every a ∈A, and an element u ∈A is invertible in A if there is v ∈A such that

uv = vu = e.

Definition 5.1.5. Let Abe an algebra with unit and let B be a subalgebra of A. We say

that B is a unital subalgebra of A if the unit of Abelongs to B.

Definition 5.1.6. Let Abe an algebra with unit and B a unital subalgebra of A. We say

that B is inverse-closed in A if and only if every element of Bwhich is invertible in A, is

also invertible in B.

Definition 5.1.7. Let Abe an algebra over C. We say that A is a normed algebra if and

only if there exists a norm ∥ · ∥ : A→ R+
0 that verifies for every x,y ∈A,

∥xy∥ ≤ ∥x∥ ∥y∥.

Definition 5.1.8. Let Abe a normed algebra over C. We say that A is a Banach algebra

if and only if A is a complete space, that is, a space where all Cauchy sequences are

convergent.

The following theorem is a well known fact from Functional Analysis, and it will be

useful later in this work.

Theorem 5.1.9 ([3, Theorem 1.2.1]). Let A be a unital Banach algebra with unit e and let
x ∈A. If ∥x∥ < 1, then e − x is an invertible element and we have

(e − x)−1 =
∞∑
n=0

xn.
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Proof. Let x ∈ Abe such that ∥x∥ < 1. Since A is a Banach algebra, it follows that ∥xn∥ ≤
∥x∥n for each n ∈ N. Due to the fact that ∥x∥ < 1 we get that the series

∞∑
n=0

∥x∥n

is convergent in R. Hence, using the fact that ∥xn∥ ≤ ∥x∥n, we get that the series
∞∑
n=0

∥xn∥

is also convergent in R, which implies that
∞∑
n=0

xn

is absolutely convergent in A. Taking into account that A is a Banach space and the fact

that the series
∞∑
n=0

xn

is absolutely convergent, we can guarantee that this series is convergent to some element

s ∈A. Consider the sequence of partial sums (sn)n∈N defined by

sn :=
n∑
k=0

xk .

Let n ∈ N. Then

∥(e − x)sn − e∥ = ∥sn − xsn − e∥ = ∥ − xn+1∥ ≤ ∥x∥n+1 −→
n→∞

0

and also

∥sn(e − x)− e∥ = ∥sn − snx − e∥ = ∥ − xn+1∥ ≤ ∥x∥n+1 −→
n→∞

0.

Therefore the equality

s(e − x) = (e − x)s = e

holds, consequently e − x is invertible and its inverse is given by (e − x)−1 = s.

Definition 5.1.10. Let Abe a Banach algebra. We say that A is a *-algebra if and only if

there exists a function ∗ : A→A, which we call involution, such that for any x,y ∈Aand

for each λ ∈ C,

1. (x+ y)∗ = x∗ + y∗;

2. (λx)∗ = λx∗;

3. (x∗)∗ = x;

4. (xy)∗ = y∗x∗.

Moreover, if A satisfies the C∗-property, that is,

∥a∗a∥ = ∥a∥2

for each a ∈A, we say that A is a C∗-algebra.

72



5.2. IDEALS AND INVERTIBILITY

5.2 Ideals and Invertibility

In this section we will recall some important properties of maximal ideals and their

relations with invertible elements of a Banach algebra.

Definition 5.2.1. Let Abe an algebra and Ia subalgebra of A. We say that I is an ideal

of A if and only if

ia ∈I, ai ∈I,

for every i ∈Iand for each a ∈A.

Definition 5.2.2. Let Abe an algebra and Ian ideal of A. We say that I is a proper ideal

of A if and only if I,A.

Definition 5.2.3. Let Abe an algebra and I an ideal of A. We say that I is a maximal

ideal of A if there is no proper ideal Kof A such that I⊊K.

In the following theorem we will see that invertible elements do not belong to proper

ideals.

Theorem 5.2.4 ([3, Theorem 1.3.2]). Let Abe a unital commutative Banach algebra and I a
proper ideal of A. If an element is invertible in A then that element does not belong to I.

Proof. Suppose that x ∈A is invertible and suppose, by contradiction, that x ∈I. Since I

is an ideal, we can assure that x−1x = e ∈Iand consequently I= Awhich is impossible

because I is a proper ideal.

In the next result we will prove that if an element does not belong to a maximal ideal,

then it must be invertible.

Theorem 5.2.5 ([14, Theorem 1.3.2]). Let A be a unital commutative Banach algebra and
x ∈A. If there is no maximal ideal I of the algebra A such that x ∈I, then x is invertible.

Proof. Let us suppose that x is not invertible and consider the subalgebra Iof Adefined

by

I := Ax = {ax : a ∈A}.

In these conditions I is an ideal of the algebra Abecause if i ∈ I and y ∈ A, then there

exists a ∈A such that i = ax and thus

iy = (ax)y = (ay)x ∈I, yi = y(ax) = (ya)x ∈I.

Let e be the unit of A. Since x = ex, it follows that x ∈I. The ideal Imust be a proper ideal

because otherwise we would have I= A, which is equivalent to say that e ∈I, therefore

we would have e = bx for some b ∈ Awhich is impossible because we are assuming that

the element x is not invertible. Hence I is a proper ideal that contains x. Taking into

account Krull’s Lemma [3, Proposition 1.3.1], we can guarantee that every proper ideal is

contained in some maximal ideal and we conclude that x belongs to some maximal ideal

Kas we wanted to prove.
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We finish this section by proving that any maximal ideal of a unital commutative

Banach algebra is closed.

Theorem 5.2.6 ([3, Theorem 1.3.2]). Let Abe a unital commutative Banach algebra and let
Ibe a maximal ideal of the algebra A. Then closA(I) is an ideal of Aand I is closed in A.

Proof. Let Abe a unital commutative Banach algebra and let Ibe a maximal ideal of the

algebra A. Consider a ∈ A and x ∈ closA(I). In these conditions there exists a sequence

(xn)n∈N of terms in I such that lim
n→∞

∥xn − x∥ = 0, consequently, we have

lim
n→∞

∥ax − axn∥ ≤ lim
n→∞

∥a∥ ∥xn − x∥ = 0.

Therefore (axn)n∈N is a sequence of elements in I, because I is an ideal of the algebra A,

and we conclude that ax = xa ∈ closA(I), that is, closA(I) is an ideal of A that contains I.

Since I is a maximal ideal of A and I ⊆ closA(I), it follows that closA(I) = I or

closA(I) = A. Suppose, by contradiction, that closA(I) = A. It is known from [3, Theo-

rem 1.2.3] that, in a unital Banach algebra, the set of invertible elements is an open set.

Taking into account that e ∈ A = closA(I), we can assure that there exists a sequence

(yn)n∈N of elements in I such that

lim
n→∞

∥yn − e∥ = 0.

Using the previous equation and the fact that the set of invertible elements is open, we

can guarantee that there exists p ∈ N such that if n > p, then yn ∈ G(A) where G(A) is the

set of invertible elements of the algebra A. But we know that if an element is invertible,

then it cannot belong to a maximal ideal, thus yp+1 ∈I∩G(A) is a contradiction and we

conclude that closA(I) = I.

5.3 Multiplicative Linear Functionals

In this section we will start by proving important properties of multiplicative linear

functionals. Moreover, we will also study Gelfand’s theory regarding the relation between

these functionals and maximal ideals.

Definition 5.3.1. Let Abe an algebra and ϕ : A→ C a function defined on A. We say that

ϕ is a multiplicative linear functional if and only if

• ϕ(a+ b) = ϕ(a) +ϕ(b),

• ϕ(λa) = λϕ(a),

• ϕ(ab) = ϕ(a)ϕ(b),

for each a,b ∈Aand λ ∈ C. We will denote by M(A) the set of all non-null multiplicative

linear functionals of the algebra A.
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In the following theorem we will analyse some important properties of multiplicative

linear functionals.

Theorem 5.3.2 ([3, Theorem 1.4.4]). Let A be a unital Banach algebra with unit e and let
ϕ ∈M(A). Then the following properties hold:

1. ϕ(e) = 1;

2. ϕ is bounded and ∥ϕ∥ = 1.

Proof. Since ϕ is a non-null multiplicative linear functional, there is x ∈ A such that

ϕ(x) , 0. Then

ϕ(x) = ϕ(xe) = ϕ(x)ϕ(e)⇒ ϕ(e) = 1.

Suppose, by contradiction, that there exists a ∈A such that ∥a∥ = 1 and |ϕ(a)| > 1. In these

conditions we can assure, applying Theorem 5.1.9, that the element e − 1
ϕ(a)a is invertible

in Abecause A is a Banach algebra and
∥∥∥∥ 1
ϕ(a)a

∥∥∥∥ < 1, consequently the element

ϕ(a)
(
e − 1

ϕ(a)
a

)
= ϕ(a)e − a

is also an invertible element. Taking into account that ϕ(ϕ(a)e − a) = 0, it follows that

1 = ϕ(e) = ϕ((ϕ(a)e − a)(ϕ(a)e − a)−1) = ϕ(ϕ(a)e − a)ϕ((ϕ(a)e − a)−1) = 0,

which is impossible. Hence we have that

∥ϕ∥ = sup
∥a∥=1
|ϕ(a)| ≤ 1,

and due to the fact that ϕ(e) = 1, we conclude that ∥ϕ∥ = 1 as we wanted to prove.

Theorem 5.3.3 ([3, Theorem 1.4.8]). Let Abe a unital commutative Banach algebra and let
a ∈A. Then a is invertible in A if and only if ϕ(a) , 0, for each ϕ ∈M(A).

Proof. Let a be an invertible element in Aand let ϕ ∈M(A). Then

e = aa−1⇒ 1 = ϕ(a)ϕ(a−1),

which implies that ϕ(a) , 0. For the proof of the sufficiency part, we refer to [3, Theo-

rem 1.4.8] or any other book on the theory of Banach algebras.

Definition 5.3.4. Let Abe a unital commutative Banach algebra and a ∈A. We define the

function

Γa : M(A)→ C, ϕ 7→ ϕ(a)

as the Gelfand transform of the element a.

The following theorem is an important theorem regarding Gelfand’s theory, which we

will not prove in this work.
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Theorem 5.3.5 ([3, Theorem 1.4.6]). Let Abe a unital commutative Banach algebra. Then I

is a maximal ideal of A if and only if there exists a non-null multiplicative linear functional ϕ,
defined on A, that verifies

ker(ϕ) = I.

Taking into account the previous theorem, there is a unique correspondence between

the non-null multiplicative linear functionals and the maximal ideals of a unital commu-

tative Banach algebra. Consequently, we will also denote by M(A) the set of all maximal

ideals in A.

Definition 5.3.6. We will equip the space M(A) with the Gelfand topology, that is, the

topology given by arbitrary unions of finite intersections of sets of the form

{Γ −1
a (U ) :U is open in C}.

In these conditions M(A) is a subset of A′ , where A′ denotes de dual space of A,

and the Gelfand topology coincides with the weak-* topology of A′ , that is, the smallest

topology that makes continuous every function of the form

fa : A′→ C, ϕ 7→ ϕ(a),

where a ∈A. It is known from [13, Proposition 5.2.1] that if A is a Banach space then A′ is

a Hausdorff space under the weak-* topology. As basis of neighborhoods of a functional

ϕ0 ∈A′ we have the family of open sets

U (ϕ0,ϵ,a1, . . . , an) := {ϕ ∈A′ : |ϕ(ai)−ϕ0(ai)| < ϵ, i ∈ {1, . . . ,n}},

where ϵ > 0, n ∈ N and a1, . . . , an ∈A.

Definition 5.3.7. Given a net (ϕα) in A′ , we say that (ϕα) converges weakly-* to ϕ ∈ A′ ,
and we write ϕα →

α(w∗)
ϕ, if and only if ϕα(a)→

α
ϕ(a) for each a ∈A.

In the following result we will prove that the Gelfand space M(A) is a compact Haus-

dorff space under the weak-* topology.

Theorem 5.3.8 ([3, Theorem 2.1.3]). Let A be a unital commutative Banach algebra. Then
M(A) is a compact Hausdorff space under the weak-* topology.

Proof. We know from Alaoglu’s Theorem [15, Theorem 1.4] that the closed ball

B(A) = {ϕ ∈A′ : ∥ϕ∥ ≤ 1}

is a compact space under the weak-* topology. Taking in account the definition of M(A)

and the fact that any non-null multiplicative linear functional has norm equal to 1, we

can assure that M(A) ⊆ B(A). Let (ϕα)α∈D , where D is a directed set, be a net of elements

in M(A) such that that ϕα →
α(w∗)

ϕ ∈ B(A) and let x,y ∈A. Then

ϕ(xy) = lim
α
ϕα(xy) = lim

α
ϕα(x) lim

α
ϕα(y) = ϕ(x)ϕ(y),

76



5.3. MULTIPLICATIVE LINEAR FUNCTIONALS

consequently ϕ is a multiplicative linear functional in A. Since (ϕα)α∈D is a net of ele-

ments in M(A) such that ϕα(e) = 1 for each α ∈ A, it follows that ϕ(e) = 1 and thus ϕ

is a non-null multiplicative linear functional, that is, ϕ ∈M(A). Hence M(A) is a closed

subspace of B(A) and due to the fact that M(A) is a closed subspace of a compact Haus-

dorff space, we can guarantee that M(A) is a compact Hausdorff space as we wanted to

prove.

Definition 5.3.9. Let Abe a Banach algebra and E ⊆A.We denote by algA(E) the smallest

closed subalgebra of A that contains E, that is,

algA(E) := closA


m∑
j=1

λj

nj∏
k=1

xj,k :m,n1, . . . ,nm ∈ N, λj ∈ C, xj,k ∈ E

 .
Moreover, we will call polynomials in elements x1,1, . . . ,x1,n1

, . . . ,xm,1, . . . ,xm,nm ∈ E to the

elements of the form

P (x1,1, . . . ,x1,n1
, . . . ,xm,1, . . . ,xm,nm) :=

m∑
j=1

λj

nj∏
k=1

xj,k

where m,n1, . . . ,nm ∈ N and λ1, . . . ,λm ∈ C.

Definition 5.3.10. Let Abe a unital Banach algebra with unit e. We say that K ⊆ A is a

system of generators of A if and only if e < K and

A= algA(K ∪ {e}).

We finish this section by proving that, in fact, the Gelfand topology can be defined in

terms of a system of generators.

Theorem 5.3.11 ([7, Chapter 1, Section 5, Theorem 3]). Let A be a unital Banach algebra
with unit e, let K be a system of generators of Aand let ϕ0 ∈M(A). Then the sets of the form

U (ϕ0,ϵ,x1, . . . ,xm) := {ϕ ∈M(A) : |ϕ(xi)−ϕ0(xi)| < ϵ, i ∈ {1, . . . ,m}} (5.1)

where ϵ > 0, m ∈ N and x1, . . . ,xm ∈ K, form a basis of neighbourhoods of the element ϕ0.

Proof. Let ϵ > 0, let n ∈ N and let y1, . . . , yn ∈ A. We just need to prove that there exists a

neighbourhood of the form (5.1) contained in the neighbourhood

U (ϕ0,ϵ,y1, . . . , yn) := {ϕ ∈M(A) : |ϕ(yi)−ϕ0(yi)| < ϵ, i ∈ {1, . . . ,n}}.

Since K is a system of generators of A, it follows that there exist polynomials in elements

in K, Pi(x1,1,i , . . . ,x1,n1,i ,i , . . . ,xmi ,1,i , . . . ,xmi ,nmi ,i ,i
), with i ∈ {1, . . . ,n}, that verify

∥Pi − yi∥ <
ϵ
3
, Pi := Pi(x1,1,i , . . . ,x1,n1,i ,i , . . . ,xmi ,1,i , . . . ,xmi ,nmi ,i ,i

) :=
mi∑
j=1

λj,i

nj,i∏
k=1

xj,k,i
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for each i ∈ {1, . . . ,n}. Given ϕ ∈M(A) and x,y,z ∈ A, using the fact that |ϕ(a)| ≤ ∥a∥ for

each a ∈A, we have

|ϕ(xyz)−ϕ0(xyz)| ≤ |ϕ(x)ϕ(y)ϕ(z)−ϕ(x)ϕ(y)ϕ0(z)|+ |ϕ(x)ϕ(y)ϕ0(z)−ϕ(x)ϕ0(y)ϕ0(z)|

+ |ϕ(x)ϕ0(y)ϕ0(z)−ϕ0(x)ϕ0(y)ϕ0(z)|

= |ϕ0(yz)| |ϕ(x)−ϕ0(x)|+ |ϕ(x)ϕ0(z)| |ϕ(y)−ϕ0(y)|

+ |ϕ(xy)| |ϕ(z)−ϕ0(z)|

≤ ∥y∥ ∥z∥ |ϕ(x)−ϕ0(x)|+ ∥x∥ ∥z∥ |ϕ(y)−ϕ0(y)|+ ∥x∥ ∥y∥ |ϕ(z)−ϕ0(z)|.

Therefore applying a similar reasoning as we did in the previous inequality, we get that

|ϕ(z1 · · ·zm)−ϕ0(z1 · · ·zm)| =

∣∣∣∣∣∣∣
m∏
k=1

ϕ(zk)−
m∏
k=1

ϕ0(zk)

∣∣∣∣∣∣∣
≤

m∑
k=1

∥z1∥ · · · ∥zk−1∥ ∥zk+1∥ · · · ∥zm∥ |ϕ(zk)−ϕ0(zk)|, (5.2)

for every finite product of elements z1, . . . , zm ∈Awith m ∈ N. Let

δ := min
i∈{1,...,n}

ϵ

3
mi∑
j=1

|λj,i |
nj,i∑
k=1

∥xj,1,i∥ · · · ∥xj,k−1,i∥ ∥xj,k+1,i∥ · · · ∥xj,nj,i ,i∥


−1

and let ϕ ∈ U (ϕ0,δ,x1,1,1, . . . ,x1,n1,1,1, . . . ,xm1,1,1, . . . ,xm1,nm1 ,1,1
, . . . ,x1,1,n, . . . ,xmn,nmn,n,n

). Then

for each i ∈ {1, . . . ,n}, one has

|ϕ(Pi)−ϕ0(Pi)| ≤
mi∑
j=1

|λj,i | |ϕ(xj,1,i · · ·xj,nj,i ,i)−ϕ0(xj,1,i · · ·xj,nj,i ,i)|

≤
mi∑
j=1

|λj,i |
nj,i∑
k=1

∥xj,1,i∥ · · · ∥xj,k−1,i∥ ∥xj,k+1,i∥ · · · ∥xj,nj,i ,i∥ |ϕ(xj,k,i)−ϕ0(xj,k,i)|

<
mi∑
j=1

|λj,i |
nj,i∑
k=1

∥xj,1,i∥ · · · ∥xj,k−1,i∥ ∥xj,k+1,i∥ · · · ∥xj,nj,i ,i∥ δ

≤ ϵ
3
.

Therefore U (ϕ0,δ,x1,1,1, . . . ,x1,n1,1,1, . . . ,xm1,1,1, . . . ,xm1,nm1 ,1,1
, . . . ,x1,1,n, . . . ,xmn,nmn,n,n

) is con-

tained in the set U (ϕ0,
ϵ
3 , P1, . . . , Pn). Let ϕ ∈U (ϕ0,

ϵ
3 , P1, . . . , Pn). Then for each i ∈ {1, . . . ,n},

we have

|ϕ(yi)−ϕ0(yi)| ≤ |ϕ(yi)−ϕ(Pi)|+ |ϕ(Pi)−ϕ0(Pi)|+ |ϕ0(Pi)−ϕ0(yi)|

≤ ∥ϕ∥ ∥Pi − yi∥+ ∥ϕ0∥ ∥Pi − yi∥+ |ϕ(Pi)−ϕ0(Pi)|

= 2∥Pi − yi∥+ |ϕ(Pi)−ϕ0(Pi)| < 2
ϵ
3

+
ϵ
3

= ϵ,

for every i ∈ {1 . . . ,n}.
Consequently, U (ϕ0,

ϵ
3 , P1, . . . , Pn) is contained in the neighbourhood U (ϕ0,ϵ,y1, . . . , yn)

and thus the setU (ϕ0,δ,x1,1,1, . . . ,x1,n1,1,1, . . . ,xm1,1,1, . . . ,xm1,nm1 ,1,1
, . . . ,x1,1,n, . . . ,xmn,nmn,n,n

) is

contained in the neighbourhood U (ϕ0,ϵ,y1, . . . , yn) as we wanted to prove.
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5.4 Extensions of Multiplicative Linear Functionals

In this section we will prove that the Gelfand space of a unital commutative Banach

algebra is homeomorphic to a closed subset of the Gelfand space of its embedded densely

subalgebras. Moreover, we will also see an important theorem regarding extensions of

multiplicative linear functionals.

Definition 5.4.1. Let Aand Bbe normed algebras. We say that the algebra Ais embedded

densely into the algebra B if and only if A⊆ B, closB(A) = B and if there exists c > 0

such that for each x ∈A,
∥x∥B≤ c∥x∥A.

The following two results are going to be crucial in order to prove Theorem 5.7.5 and

Theorem 5.8.1.

Theorem 5.4.2 ([8, Chapter 7, Section 3, Proposition 1]). Let Aand Bbe unital commutative
Banach algebras such that A is embedded densely in B. Then the space M(B) is homeomorphic
to a closed subset of M(A).

Proof. Let R be the set of the multiplicative linear functionals of M(A) which admits a

unique extension to the multiplicative linear functionals of M(B), that is,

R := {f ∈M(A)| ∃1g ∈M(B) : f (x) = g(x), for each x ∈A}

and consider

Φ : M(B)→R, g 7→ g|A

a function defined on the space M(B). We know from Theorem [3, Theorem 1.4.7] that

any commutative unital Banach algebra always contains a maximal ideal, therefore both

the sets M(B) and M(A) are not the empty set. It is important to observe that the set R is

also different from the empty set. Indeed, we know that M(B) , ∅ therefore there exists an

elementϕ ∈M(B), consequently, we have thatϕ|A ∈M(A) andϕ is the only multiplicative

linear functional that is an extension of ϕ|A in B. For if x ∈ B and if ϕ1,ϕ2 ∈M(B) are

extensions of ϕ|A, then due to the fact that A is embedded densely into B it follows that

there exists a sequence (xn)n∈N, with elements in A, such that

lim
n→∞

∥x − xn∥B = 0.

Hence we get that

ϕ1(x) = lim
n→∞

ϕ1(xn) = lim
n→∞

ϕ|A(xn) = lim
n→∞

ϕ2(xn) = ϕ2(x)

which implies that ϕ1 = ϕ2 and thus R , ∅. Taking into account the definition of the set

R and the definition of the function Φ ,we can see that Φ is surjective. Given f ,g ∈M(B),

it follows by the uniqueness of these extensions that

Φ(f ) = Φ(g)⇔ f|A = g|A⇔ f = g
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therefore the function Φ is injective and thus bijective. Let ϵ > 0, f̃0 ∈ M(B), n ∈ N,
x1, . . . ,xn ∈A, f0 := f̃0|A, and let

V (f0,ϵ,x1, . . . ,xn) := {f ∈R : |f (xj )− f0(xj )| < ϵ, j ∈ {1, . . . ,n}}

be a neighborhood of Φ(f̃0) = f0. Then

U (f̃0,ϵ,x1, . . . ,xn) := {g ∈M(B) : |g(xj )− f̃0(xj )| < ϵ, j ∈ {1, . . . ,n}}

is a neighborhood of f̃0 that verifies Φ(U (f̃0,ϵ,x1, . . . ,xn)) ⊆ V (f0,ϵ,x1, . . . ,xn), consequently

Φ is continuous. We know that, under the weak-* topology, M(A) and M(B) are Hausdorff
and compact spaces on the dual space of the algebras A and B respectively (see Theo-

rem 5.3.8). Since Φ is a bijective continuous function and M(B) is compact, it follows

that Φ(M(B)) = R is compact. But we also know that R is a subset of M(A) which is

Hausdorff, consequently R is closed. Taking into account that Φ is a continuous bijective

correspondence between a compact and a Hausdorff space, we can assure that Φ is a

homeomorphism as we wanted to prove.

Theorem 5.4.3 ([8, Chapter 7, Section 3, Proposition 2]). Let A,B and C be unital commu-
tative Banach algebras such that A is embedded densely in B and B is embedded densely in
C. If every non-null multiplicative linear functional of the algebra A is extensible to a unique
multiplicative linear functional of the algebra C, then the same happens for the pair B and C.

Proof. Let g ∈M(B) and f = g|A. In these conditions we get that f ∈M(A), consequently

by our hypothesis there exists a unique h ∈M(C) such that f = h|A and therefore g|A = h|A.

Then h|B is an extension of h|A = g|A, and this extension is unique. For if x ∈ B and

if h1,h2 ∈ M(B) are two extensions of h|A, then due to the fact that the algebra A is

embedded densely into B, there exists a sequence (xn)n∈N of elements in A such that

lim
n→∞

∥x − xn∥B = 0.

Hence we have

h1(x) = lim
n→∞

h1(xn) = lim
n→∞

h|A(xn) = lim
n→∞

h2(xn) = h2(x),

therefore h1 = h2. Thus we must have h|B = g because g ∈M(B) is also an extension of g|A,

which implies that h is the unique extension of h|B = g because the algebra B is embedded

densely into the algebra C. For if y ∈ C and if h3,h4 ∈M(C) are two extensions of g, then

due to the fact that the algebra B is embedded densely into C, there exists a sequence

(yn)n∈N of elements in B such that

lim
n→∞

∥y − yn∥C = 0.

Consequently, it follows that

h3(y) = lim
n→∞

h3(yn) = lim
n→∞

g(yn) = lim
n→∞

h4(yn) = h4(y)

and we conclude that h is the unique extension of g as we wanted to prove.
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5.5 Banach Algebra l1(R)

In this section we will give the definition of a character in the complex unit circle and

we will recall the Banach algebra l1(R). After that, we are going to prove that the Gelfand

space of l1(R) is homeomorphic to the space of all characters. Moreover, we will prove

that the set of multiplicative linear functionals of l1(R), corresponding to continuous

characters, is dense in the Gelfand space of l1(R).

Definition 5.5.1. Let (T, ·) denote the multiplicative group of the complex unit circle and

(R,+) the additive group of real numbers. We say that χ : (R,+)→ (T, ·) is a character if

and only if χ is a homomorphism, that is,

χ(x+ y) = χ(x)χ(y)

for each x,y ∈ R. The set of characters forms a group under the usual multiplication,

which we will denote by X.

Taking into account the previous definition, we can see that if χ is a character, then

χ(0) = 1 and also that

χ(−λ) =
1

χ(λ)
=

χ(λ)
|χ(λ)|2

= χ(λ),

for each λ ∈ R. It is immediate that the function eλ(x) := eiλx is a character for every λ ∈ R.
In fact, it is known from [11, Chapter 14, Section A, Example 1] that if f is a continuous

character, then f = eµ for some µ ∈ R.

Definition 5.5.2. Let x : R → C be a complex function. We say that x is absolutely

summable if and only if it is different from zero on an at most countable set and if

∥x∥ :=
∑
λ∈R
|x(λ)| <∞.

In fact, the set of all absolutely summable functions on R forms a vector space under the

usual sum and multiplication by complex numbers. With the norm stated above, it is

well known that this set is a Banach space and we will denote it by l1(R).

We can introduce in l1(R) an operation of multiplication of elements, where the prod-

uct of two elements x,y ∈ l1(R) is defined by

(x ∗ y)(t) :=
∑
λ∈R

x(t −λ)y(λ), t ∈ R.

This product is indeed well defined due to the fact that∑
λ∈R
|x(t −λ)| |y(λ)| ≤ ∥x∥

∑
λ∈R
|y(λ)| = ∥x∥ ∥y∥ <∞,

and, with this new operation, the space l1(R) becomes a unital commutative Banach

algebra.
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Definition 5.5.3. A basis of neighbourhoods of an element χ0 ∈ X is given by

{χ ∈ X : |χ(xj )−χ0(xj )| < ϵ, j ∈ {1, . . . ,n}}

where ϵ > 0 and x1, . . . ,xn ∈ R.

Theorem 5.5.4 ([7, Chapter 5, Section 29, Theorem 1]). Let H := l1(R). Then the space
M(H) is homeomorphic to the space X, where the first set is equipped with the weak-* topology
and the latter set equipped with the topology described in Definition 5.5.3.

Proof. Consider the function

δ(t) :=


1, if t = 0,

0, if t , 0,

(5.3)

for each t ∈ R. Taking into account the definition of the function δ, we have that δ ∈ H.
Given t,λ,µ ∈ R, we can guarantee that

(T−λ,δ ∗ T−µ,δ)(t) =
∑
s∈R

T−λ,δ(t − s)T−µ,δ(s) =
∑
s∈R

δ(t − s −λ)δ(s −µ) = T−λ−µ,δ(t), (5.4)

where Tλ,δ := Tλδ denotes the translation function of δ with respect to λ ∈ R given in

Definition 2.1.7. Let ϕ ∈M(H) and let

χϕ(λ) := ϕ(T−λδ),

for each λ ∈ R. Since ϕ ∈M(H) and equation (5.4) holds, it follows that

χϕ(λ+µ) = ϕ(T−λ−µδ) = ϕ(T−λδ ∗ T−µδ) = ϕ(T−λδ)ϕ(T−µδ) = χϕ(λ)χϕ(µ), (5.5)

for any λ,µ ∈ R. Due to the fact that |ϕ(h)| ≤ ∥h∥H for each h ∈H, we can assure that

|χϕ(λ)| = |ϕ(T−λδ)| ≤ ∥T−λδ∥H = 1

for every λ ∈ R, and since δ = T0δ is the unit of the algebra H, we have χϕ(0) = ϕ(T0δ) = 1.

Hence, applying equality (5.5) with µ = −λ, we get that |χϕ(λ)| = 1 for each λ ∈ R and we

conclude that χϕ is indeed a character of (R,+). Due to the fact that every element x ∈H
can be represented in the form

x =
∑
λ∈R

x(λ)T−λδ,

where the previous series converges in the norm of H, it follows from the definition of

the character χϕ that

ϕ(x) =
∑
λ∈R

x(λ)χϕ(λ). (5.6)

Given χ ∈ X, consider the function

hχ :H → C, x 7→
∑
λ∈R

x(λ)χ(λ).
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In these conditions the function hχ is a multiplicative linear functional defined on H,

because it is a linear functional by definition, and satisfies

hχ(x ∗ y) =
∑
λ∈R

(x ∗ y)(λ)χ(λ) =
∑
λ∈R

∑
µ∈R

x(λ−µ)y(µ)χ(λ) =
∑
µ∈R

y(µ)
∑
λ∈R

x(λ−µ)χ(λ)

=
∑
µ∈R

y(µ)
∑
λ∈R

x(λ−µ)χ(λ−µ+µ) =
∑
µ∈R

y(µ)χ(µ)
∑
λ∈R

x(λ−µ)χ(λ−µ)

=

∑
µ∈R

y(µ)χ(µ)


∑
k∈R

x(k)χ(k)

 = hχ(y)hχ(x) = hχ(x)hχ(y).

Since

hχ(δ) =
∑
λ∈R

δ(λ)χ(λ) = 1,

it follows that hχ is different from the null function and therefore hχ ∈M(H). Let

Φ : M(H)→ X, ϕ 7→ χϕ , (5.7)

and let χ ∈ X. Then

χhχ(λ) = hχ(T−λδ) =
∑
t∈R

δ(t −λ)χ(t) = χ(λ),

for each λ ∈ R, and, consequently, χhχ = χ. Hence there exists f = hχ ∈M(H) such that

Φ(f ) = χ, that is, Φ is surjective. Given ϕ1,ϕ2 ∈ M(H), for every λ ∈ R and x ∈ H we

guarantee, using equation (5.6), that

Φ(ϕ1) = Φ(ϕ2)⇒ χϕ1
(λ) = χϕ2

(λ)⇒ ϕ1(x) = ϕ2(x)⇒ ϕ1 = ϕ2,

thus Φ is injective, and taking into account that Φ is surjective, we can conclude that Φ is

bijective. The functions T−λδ, with λ ∈ R \ {0}, form a system of generators of the algebra

H and therefore, applying Theorem 5.3.11, the sets of type

{ϕ ∈M(H) : |ϕ(T−λkδ)−ϕ0(T−λkδ)| = |χϕ(λk)−χϕ0
(λk)| < ϵ, k ∈ {1, . . . ,n}} (5.8)

form a basis of neighborhoods of the elementϕ0 ∈M(H),where ϵ > 0,n ∈ N andλ1, . . . ,λn ∈
R \ {0}. Let ϕ0 ∈M(H) and let

V := V (χϕ0
,ϵ,λ1, . . . ,λn) := {χϕ ∈ X : |χϕ(λk)−χϕ0

(λk)| < ϵ, k ∈ {1, . . . ,n}}

be a neighborhood of Φ(ϕ0) = χϕ0
. Then there is a neighborhood

U :=U (ϕ0,ϵ,λ1, . . . ,λn) := {ϕ ∈M(H) : |ϕ(T−λkδ)−ϕ0(T−λkδ)| < ϵ, k ∈ {1, . . . ,n}}

ofϕ0 such that Φ(U ) ⊆ V and we conclude that Φ is continuous. Using a similar reasoning

to the function Φ−1, we can assure that Φ−1 is continuous and we conclude that Φ is a

homeomorphism between M(H) and X as we wanted to prove.
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In this work, since M(H) is homeomorphic to X, we will denote by MC(H) the set of

non-null multiplicative linear functionals of H, corresponding to continuous characters

χλ(t) = eiλt

for each λ ∈ R and t ∈ R, that is,

MC(H) := {ϕ ∈M(H)| ∃λ ∈ R : Φ(ϕ) = eλ},

where Φ is the function defined in statement (5.7).

Theorem 5.5.5 ([7, Chapter 5, Section 29, Theorem 2]). Let H := l1(R). Then the set MC(H)

is dense in M(H).

Proof. Let ϕ0 ∈M(H) and let

U (ϕ0,ϵ,x1, . . . ,xt) := {ϕ ∈M(H) : |ϕ(xj )−ϕ0(xj )| < ϵ,j ∈ {1, . . . , t}}

be an arbitrary neighbourhood of ϕ0, where ϵ > 0, t ∈ N and x1, . . . ,xt ∈H. Let δ be given

by (5.3). Taking into account the proof of the previous theorem and statement (5.8), we

can assure that U (ϕ0,ϵ,x1, . . . ,xt) contains a neighbourhood U ′(ϕ0,ϵ1,λ1, . . . ,λn) of the

form

U ′ :=U ′(ϕ0,ϵ1,λ1, . . . ,λn) := {ϕ ∈M(H) : |ϕ(T−λkδ)−ϕ0(T−λkδ)| < ϵ1, k ∈ {1, . . . ,n}},

where λ1, . . . ,λn ∈ R \ {0} and ϵ1 > 0. We can select numbers {λk1
, . . . ,λkm} ⊆ {λ1, . . . ,λn},

where m ∈ N, such that the numbers {λk1
, . . . ,λkm} are linearly independent over the field

of rational numbers, that is, given αk1
, . . . ,αkm ∈Q,

αk1
λk1

+ · · ·+αkmλkm = 0⇒ αk1
= · · · = αkm = 0,

and also that every λk , with k ∈ {1, . . . ,n}, can be expressed as a linear combination of the

values {λk1
, . . . ,λkm} with rational coefficients, where j ∈ {1, . . . ,m}. Consequently, for each

i ∈ {1, . . . ,n}, there exist αk1,i , . . . ,αkm,i ∈Q such that

−λi = αk1,iλk1
+ · · ·+αkm,iλkm .

Let L be the least common multiple of the denominators of the coefficients of all these

terms, that is, let

L := lcm (αk1,1, . . . ,αkm,1, . . . ,αk1,n, . . . ,αkm,n).

Then the numbers λk , with k ∈ {1, . . . ,n}, can be expressed in terms of the numbers

µj :=
λkj
L
,

where j ∈ {1, . . . ,m}, in the form of linear combinations with integer coefficients, that is,

for each i ∈ {1, . . . ,n} there exist βk1,i , . . . ,βkm,i ∈ Z such that

−λi = βk1,iµ1 + · · ·+ βkm,iµm

84



5.5. BANACH ALGEBRA l1(R)

where, in fact,

βk1,i = L ·αk1,i , . . . ,βkm,i = L ·αkm,i

for every i ∈ {1, . . . ,n}. In these conditions the elements µj are also linearly independent

over the rational numbers, and the functions T−λkδ, with k ∈ {1, . . . ,n}, are products of

the functions T−µjδ and Tµjδ, with j ∈ {1, . . . ,m}, where this product refers to the product

defined in l1(H).

Let us establish an auxiliary fact. Let β ∈ Z \ {0} and let µ ∈ R. If β > 0, then it is

immediate that for every ϕ ∈M(H), one has

|ϕ(Tβµδ)−ϕ0(Tβµδ)| = |(ϕ(Tµδ))|β| − (ϕ0(Tµδ))|β||.

On the other hand, if β < 0, then observing that

χϕ(−λ) = χϕ(λ)

for each λ ∈ R, we can guarantee that

|ϕ(Tβµδ)−ϕ0(Tβµδ)| = |(ϕ(T−µδ))|β| − (ϕ0(T−µδ))|β||

= |(χϕ(µ))|β| − (χϕ0
(µ))|β||

= |(χϕ(−µ))|β| − (χϕ0
(−µ))|β||

= |(χϕ(−µ))|β| − (χϕ0
(−µ))|β||

= |(ϕ(Tµδ))|β| − (ϕ0(Tµδ))|β||.

Thus, for all β ∈ Z \ {0} and µ ∈ R,

|ϕ(Tβµδ)−ϕ0(Tβµδ)| = |(ϕ(Tµδ))|β| − (ϕ0(Tµδ))|β||. (5.9)

If j ∈ {1, . . . ,n}, then using inequality (5.2), equality (5.9) and the fact that ∥Tλδ∥ = 1 for

every λ ∈ R, one has

|ϕ(T−λjδ)−ϕ0(T−λjδ)| = |ϕ(Tβk1 ,jµ1+···+βkm,jµmδ)−ϕ0(Tβk1 ,jµ1+···+βkm,jµmδ)|

≤
m∑
s=1

|ϕ(Tβks ,jµsδ)−ϕ0(Tβks ,jµsδ)|

=
m∑
s=1

∣∣∣(ϕ(Tµsδ))|βks ,j | − (ϕ0(Tµsδ))|βks ,j |
∣∣∣

≤
m∑
s=1

|βks ,j | |ϕ(Tµsδ)−ϕ0(Tµsδ)|. (5.10)

Let

ϵ2 := ϵ1 min
j∈{1,...,n}

1 +
m∑
s=1

|βks ,j |

−1

and let

U ′′ :=U ′′(ϕ0,ϵ2,µ1, . . . ,µm) := {ϕ ∈M(H) : |ϕ(T−µjδ)−ϕ0(T−µjδ)| < ϵ2, j ∈ {1, . . . ,m}}.
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If ϕ ∈U ′ , then it follows from inequality (5.10) that for all j ∈ {1, . . . ,n},

|ϕ(T−λjδ)−ϕ0(T−λjδ)| ≤
m∑
s=1

|βks ,j | |ϕ(Tµsδ)−ϕ0(Tµsδ)| < ϵ2

m∑
s=1

|βks ,j | < ϵ1,

that is, ϕ ∈U ′ and thus we proved that U ′′ ⊆U ′ .
We can consider that the character corresponding to ϕ0 verifies χϕ0

(µj) = e2πiaj , for

some aj ∈ R and j ∈ {1, . . . ,m} because the function eλ is surjective in T for any λ ∈ R \ {0}.
Due to the fact that the function eλ is uniformly continuous in R for each λ ∈ R, there

exists ηϵ2
> 0 such that for every t1, t2 ∈ R we have

|t1 − t2| < ηϵ2
⇒ |eit1 − eit2 | < ϵ2. (5.11)

Taking into account Kronecker’s Theorem [10, Theorem 444], there is t0 ∈ R and p1, . . . ,pm ∈
Z satisfying

|aj − t0µj − pj | <
ηϵ2

2π
,

that is,

|2πaj − 2πpj − 2πt0µj | < ηϵ2

for each j ∈ {1, . . . ,m}. Then, using inequality (5.11), we get that

|e2πiaj−2πipj − e2πit0µj | = |e2πiaj e−2πipj − e2πit0µj | = |e2πit0µj − e2πiaj | < ϵ2,

that is

|e2πit0µj −χϕ0
(µj )| < ϵ2

for each j ∈ {1, . . . ,m}. Consequently the neighbourhood U ′′(ϕ0,ϵ2,µ1, . . . ,µm) contains the

element ϕ∗ ∈ MC(H) corresponding to the continuous character e2πt0(x) := e2πt0ix, and

since U ′′(ϕ0,ϵ2,µ1, . . . ,µm) ⊆ U (ϕ0,ϵ,x1, . . . ,xt), it follows that ϕ∗ ∈ U (ϕ0,ϵ,x1, . . . ,xt) as

we wanted to prove.

5.6 C∗-Algebra AP (R) and Banach Algebra APp(R)

Let us recall that we defined the space AP (R) as the closure, in L∞(R), of the space AP P (R)

of all finite sums of trigonometric polynomial functions. The following theorem show us

that AP (R) is, in fact, a commutative C∗-algebra.

Theorem 5.6.1. The set AP (R) is a commutative C∗-subalgebra of L∞(R).

Proof. Since L∞(R) is a Banach space and since AP (R) is a closed subspace of L∞(R),

because it is the closure of AP P (R), it follows that AP (R) is indeed a Banach space. Let

f ,g,h ∈ AP (R) and λ ∈ C. Then there exist sequences (fn)n∈N, (gn)n∈N and (hn)n∈N of terms

in AP P (R) such that

lim
n→∞

∥f − fn∥L∞(R) = 0,

lim
n→∞

∥g − gn∥L∞(R) = 0,
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lim
n→∞

∥h− hn∥L∞(R) = 0.

Then, for each x ∈ R, we have

1. (f g)(x) = f (x)g(x) = lim
n→∞

fn(x) lim
n→∞

gn(x) = lim
n→∞

fn(x)gn(x) = lim
n→∞

gn(x)fn(x)

= lim
n→∞

gn(x) lim
n→∞

fn(x) = g(x)f (x) = (gf )(x);

2. (f (gh))(x) = lim
n→∞

fn(x)( lim
n→∞

gn(x) lim
n→∞

hn(x)) = ( lim
n→∞

fn(x) lim
n→∞

gn(x)) lim
n→∞

hn(x)

= ((f g)h)(x);

3. (λf (x))g(x) = (λ lim
n→∞

fn(x)) lim
n→∞

gn(x) = lim
n→∞

fn(x)(λ lim
n→∞

gn(x)) = f (x)(λg(x));

4. f (x)(g(x) + h(x)) = lim
n→∞

fn(x)( lim
n→∞

gn(x) + lim
n→∞

hn(x))

= lim
n→∞

fn(x) lim
n→∞

gn(x) + lim
n→∞

fn(x) lim
n→∞

hn(x) = f (x)g(x) + f (x)h(x);

5. (f (x) + g(x))h(x) = ( lim
n→∞

fn(x) + lim
n→∞

gn(x)) lim
n→∞

hn(x)

= lim
n→∞

fn(x) lim
n→∞

hn(x) + lim
n→∞

gn(x) lim
n→∞

hn(x) = f (x)h(x) + g(x)h(x);

6. ||f g ||L∞(R) = sup
x∈R
|f (x)g(x)| ≤ sup

x∈R
|f (x)| sup

x∈R
|g(x)| = ||f ||L∞(R) ||g ||L∞(R).

Consequently AP (R) is a commutative Banach algebra. Consider the operation ∗ to be

the conjugate operation that we know it is well defined in C. It follows that for every

f ,g ∈ AP (R), for any λ ∈ C and for each x ∈ R,

1. (f (x) + g(x))∗ = f (x) + g(x) = lim
n→∞

fn(x) + lim
n→∞

gn(x) = f ∗(x) + g∗(x);

2. (λf (x))∗ = λf (x) = λ lim
n→∞

fn(x) = λf ∗(x);

3. ((f (x))∗)∗ = lim
n→∞

fn(x) = f (x);

4. (f (x)g(x))∗ = f (x)g(x) = lim
n→∞

gn(x) lim
n→∞

fn(x) = g∗(x)f ∗(x).

That is, ∗ verifies all the proprieties of an involution and thus AP (R) is a commutative
∗-algebra. Let ϕ ∈ AP (R). Then

∥ϕ∗ϕ∥L∞(R) = ∥ϕϕ∥L∞(R) = sup
x∈R
|ϕ(x)ϕ(x)| = sup

x∈R
|(ϕ(x))2| =

(
sup
x∈R
|ϕ(x)|

)2

= ∥ϕ∥2L∞(R),

consequently for every f ∈ AP (R) we have

∥f ∗f ∥L∞(R) = ∥f ∥2L∞(R).

Hence AP (R) verifies the C∗-property and we conclude that AP (R) is indeed a commuta-

tive C∗-subalgebra of L∞(R).
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Definition 5.6.2. Let φ ∈ L∞(R) and 1 < p <∞. We say that φ is a Fourier multiplier on

Lp(R) if and only if the map f 7→ (F−1φF)(f ) maps L2(R)∩Lp(R) into itself and extends

to a unique bounded operator on Lp(R), where the latter operator is denoted by W 0
φ .

In this work we will denote by Mp(R) the set of all Fourier multipliers on Lp(R) and it

is known, from [9, Proposition 2.5.13], that Mp(R) is a Banach algebra under the norm

∥φ∥Mp(R) := ∥W 0
φ∥B(Lp(R)), φ ∈Mp(R). (5.12)

Example 5.6.3. Given λ ∈ R, p ∈]1,+∞[ and f ∈ Lp(R), consider the translation operator

Uλ ∈B(Lp(R)) defined by

f 7→Uλf , (Uλf )(t) := f (t −λ),

for every t ∈ R. Let f ∈ L2(R)∩ Lp(R) and x ∈ R. Then there exists a sequence (fn)n∈N ⊆
L1(R)∩L2(R) such that

lim
n→∞

∥f − fn∥2 = 0.

Consequently we have

(̂Uλfn)(x) =
∫ +∞

−∞
fn(t−λ)e−2πitx dt =

∫ +∞

−∞
fn(s)e−2πi(s+λ)x ds = e−2πiλx f̂n(x) = ( ̂F−1φFfn)(x),

where φ(x) := e−2πiλx, which implies, applying the limit when n→∞, that

F(Uλf )(x) = F(F−1φFf )(x).

Taking into account the previous equality and the fact that the space L2(R) ∩ Lp(R) is

dense in Lp(R), it follows that Uλ = W 0
φ and therefore, using the fact that Mp(R) is an

algebra, we get that the set AP P (R) is contained in the set Mp(R).

Definition 5.6.4. Consider 1 < p <∞ and let Mp(R) be the set of all Fourier multipliers

on Lp(R). Then we define APp(R) as the closure of AP P (R) in Mp(R), that is,

APp(R) := closMp(R)(AP P (R)).

Theorem 5.6.5. Let p ∈]1,+∞[. Then the algebra APp(R) is embedded densely in AP (R).

Proof. Taking into account the definition of the set Mp(R) we have Mp(R) ⊆ L∞(R), and it

is know from [6, Proposition 2.4] that

∥φ∥L∞(R) ≤ ∥W 0
φ∥B(Lp(R)) = ∥φ∥Mp(R), φ ∈Mp(R).

Consequently, Mp(R) is continuously embedded into L∞(R) and thus, using the fact that

∥φ∥L∞(R) = ∥φ∥AP (R), ∥φ∥Mp(R) = ∥φ∥APp(R),

it follows that the space APp(R) is continuously embedded into the space AP (R). Let

Φ ∈ AP (R). Then there exists a sequence (Φn)n∈N ⊆ AP P (R) such that

lim
n→∞

∥Φ −Φn∥L∞(R) = 0.
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Since AP P (R) ⊆ APp(R), we have that the sequence (Φn)n∈N satisfies Φn ∈ APp(R) for each

n ∈ N, and also

lim
n→∞

∥Φ −Φn∥AP (R) = lim
n→∞

∥Φ −Φn∥L∞(R) = 0.

Therefore

closAP (R)(APp(R)) = AP (R),

that is, APp(R) is embedded densely into AP (R).

5.7 Banach Algebra APW (R)

In this section we will define the Banach algebra APW (R) and we will prove that APW (R)

is embedded densely in APp(R) and in AP (R).Moreover, we will prove that l1(R) is isomet-

rically isomorphic to APW (R) and that the Gelfand space of APW (R) is homeomorphic

to the Gelfand space of AP (R).

Definition 5.7.1. Let APW (R) denote the set of all functions f : R → C which can be

written in the form

f (x) :=
∞∑
j=1

aje
iλjx

and satisfy

∥f ∥APW (R) :=
∞∑
j=1

|aj | <∞,

where λj are arbitrary distinct real numbers and aj are arbitrary complex numbers. It is

known, from a similar result from [12, Chapter 1, Section 6.1, Lemma 1], that the space

APW (R), under the usual operations of multiplication by a scalar, sum of two functions

and multiplication of two functions, is a commutative unital Banach algebra.

Theorem 5.7.2. For each p ∈]1,+∞[, the algebra APW (R) is embedded densely in the algebra
APp(R).

Proof. Taking into account the definition of the spaces APW (R) and APp(R), it follows

that APW (R) ⊆ APp(R). Let φ ∈ APp(R). Then there exists a sequence (φn)n∈N such that

φn ∈ AP P (R) ⊆Mp(R) for every n ∈ N, and verify

lim
n→∞

∥φ−φn∥Mp(R) = 0.

Since φn ∈ AP P (R), there are αn,1, . . . ,αn,kn ∈ C and distinct numbers λn,1, . . . ,λn,kn ∈ R
such that

φn(x) = αn,1e
iλn,1x + · · ·+αn,kne

iλn,knx.

Analyzing Example 5.6.3 and using the fact that the Fourier transform is a linear operator,

we can assure that for each n ∈ N, one has

αn,1U 1
−2πλn,1

+ · · ·+αn,knU 1
−2πλn,kn

=W 0
φn
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where U 1
−2πλn,1

, . . . ,U 1
−2πλn,kn

∈B(Lp(R)) are translation operators. As a consequence of the

definition, any translation operator has norm equal to 1, hence

∥φn∥APp(R) = ∥φn∥Mp(R) = ∥W 0
φn
∥B(Lp(R)) ≤ |αn,1|+ · · ·+ |αn,kn | = ∥φn∥APW (R)

for all n ∈ N, therefore

∥φ∥APp(R) ≤ ∥φ∥APW (R),

that is, APW (R) is continuously embedded into APp(R). Consequently we get that

closAPp(R)(APW (R)) ⊆ APp(R).

Let f ∈ APp(R) = closMp(R)(AP P (R)). Then there exists a sequence (fn)n∈N such that fn ∈
AP P (R) for each n ∈ N, and

lim
n→∞

∥f − fn∥Mp(R) = 0.

Due to the fact that AP P (R) ⊆ APW (R), we have that fn ∈ APW (R) for every n ∈ N. In

these conditions

lim
n→∞

∥f − fn∥APp(R) = lim
n→∞

∥f − fn∥Mp(R) = 0,

therefore (fn)n∈N is a sequence of elements in APW (R) that converge uniformly in the

norm APp(R) to f , that is, f ∈ closAPp(R)(APW (R)) and we conclude that

closAPp(R)(APW (R)) = APp(R).

Theorem 5.7.3. The algebra APW (R) is embedded densely into the algebra AP (R).

Proof. Let p ∈]1,+∞[. Taking into account the previous theorem and Theorem 5.6.5, it

follows that APW (R) is continuously embedded into APp(R) and APp(R) is continuously

embedded into AP (R), that is, every element f ∈ APW (R) satisfies

∥f ∥AP (R) ≤ ∥f ∥APp(R) ≤ ∥f ∥APW (R).

Hence we have that

closAP (R)(APW (R)) ⊆ AP (R).

Let f ∈ AP (R) = closL∞(R)(AP P (R)). Then there exists a sequence (fn)n∈N such that fn ∈
AP P (R) for each n ∈ N, and

lim
n→∞

∥f − fn∥L∞(R) = 0.

Due to the fact that AP P (R) ⊆ APW (R), we have that fn ∈ APW (R) for every n ∈ N. In

these conditions

lim
n→∞

∥f − fn∥AP (R) = lim
n→∞

∥f − fn∥L∞(R) = 0,

therefore (fn)n∈N is a sequence of elements in APW (R) that converge uniformly in the

norm AP (R) to f , that is, f ∈ closAP (R)(APW (R)) and we conclude that

closAP (R)(APW (R)) = AP (R).
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In the next result we will see that, in fact, the Banach algebras l1(R) and APW (R) are

isometrically isomorphic.

Theorem 5.7.4. The Banach algebra l1(R) is isometrically isomorphic to the Banach algebra
APW (R).

Proof. Let us consider the operator

T : l1(R)→ APW (R), x 7→ f (t) :=
∑
λ∈R

x(λ)eiλt .

In these conditions for every x,y ∈ l1(R) and for each α ∈ C, we have

T (x+ y) =
∑
λ∈R

(x+ y)(λ)eiλt =
∑
λ∈R

x(λ)eiλt +
∑
λ∈R

y(λ)eiλt = T (x) + T (y),

T (αx) =
∑
λ∈R

(αx)(λ)eiλt = α
∑
λ∈R

x(λ)eiλt = αT (x),

T (x ∗ y) =
∑
λ∈R

(x ∗ y)(λ)eiλt =
∑
λ∈R

∑
s∈R

x(λ− s)y(s)ei(λ−s)teist

=

∑
µ∈R

x(µ)eiµt

∑
s∈R

y(s)eist
 = T (x)T (y).

Consequently, T is a linear operator that preserves the multiplication between the two

algebras. Due to the fact that

∥T ∥ = sup
x∈l1(R)\{0}

∥T (x)∥APW (R)

∥x∥l1(R)
= sup
x∈l1(R)\{0}

∑
λ∈R
|x(λ)|∑

λ∈R
|x(λ)|

= 1 <∞,

it follows that T is a bounded operator. Taking into account that l1(R) and APW (R) are

Banach spaces, we just need to prove that T is bijective and isometric and the proof is

done. Let f (t) :=
∞∑
j=1

aje
iλj t ∈ APW (R) and consider the function

x(λ) :=


aj , if ∃j ∈ N : λ = λj ,

0, otherwise,

for each λ ∈ R. Then, by construction, we have that∑
λ∈R
|x(λ)| =

∞∑
j=1

|aj | <∞

and also that T (x) = f , which implies that T is surjective. Let x,y ∈ l1(R). Taking into

account the Parseval Identity (see Theorem 3.4.8), one has

T (x) = T (y)⇒
∑
λ∈R

x(λ)eiλt =
∑
λ∈R

y(λ)eiλt
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⇒
∑
λ∈R

(x − y)(λ)eiλt = 0

⇒ 0 =M0 =
∑
λ∈R
|(x − y)(λ)|2

⇒ (x − y)(λ) = 0, for each λ ∈ R

⇒ x = y.

Therefore T is a bounded bijective linear operator, and thus the Banach algebra l1(R) is

isomorphic to the Banach algebra APW (R). Due to the fact that

∥T (x)∥APW (R) =
∑
λ∈R
|x(λ)| = ∥x∥l1(R)

for each x ∈ l1(R), it follows that T is isometric and we conclude that l1(R) is isometrically

isomorphic to APW (R) as we wanted to prove.

As we analysed before, the Banach algebra APW (R) can be identified with the Banach

algebra l1(R), consequently, there exits a homeomorphism, Ψ , between M(APW (R)) and

M(l1(R)) defined by

Ψ : M(APW (R))→M(l1(R)), ϕ 7→ ϕ ◦ T ,

where T is the isometric isomorphism defined in the previous theorem. Therefore, apply-

ing Theorem 5.5.5, we have that

MC(APW (R)) := {ϕ ∈M(APW (R))| ∃λ ∈ R : Φ(Ψ (ϕ)) = eλ},

where Φ is the function defined in statement (5.7), is dense in M(APW (R)).

The proof of the following theorem is analogous to that one of [8, Chapter 7, Section 3,

Theorem 3.3], where the authors considered the similar problem for some algebras Sand

S2 containing the subalgebras APW (R) and AP (R), respectively.

Theorem 5.7.5. The spaces M(APW (R)) and M(AP (R)) are homeomorphic.

Proof. Taking into account Theorem 5.4.2 and the fact that the Banach algebra APW (R)

is embedded densely into AP (R), we get that the space M(AP (R)) is homeomorphic to the

closed set R⊆M(APW (R)) defined by

R := {f ∈M(APW (R))| ∃1g ∈M(AP (R)) : f (x) = g(x), for each x ∈ APW (R)}.

Let ϕ ∈MC(APW (R)). Then ϕ ∈M(APW (R)) and there exists λ ∈ R such that Φ(Ψ (ϕ)) =

eλ, where Φ is the function defined in statement (5.7) and Ψ is the homeomorphism

between M(APW (R)) and M(l1(R)) defined above. Taking into account definition (5.6),

we know that the function ϕ ◦ T satisfies

(ϕ ◦ T )(x) =
∑
s∈R

x(s)eiλs,
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for each x ∈ l1(R). Let us consider the function ϕ̃ defined by

ϕ̃(y) :=


ϕ(y) = ϕ(T (x)) =

∑
s∈R

x(s)eiλs, if y ∈ APW (R),

lim
n→∞

ϕ(yn) = lim
n→∞

ϕ(T (xn)) = lim
n→∞

∑
s∈R

xn(s)eiλs, if y ∈ AP (R) \APW (R),

where (yn)n∈N is any sequence of elements in APW (R) that converges to y, which exists

because APW (R) is embedded densely in AP (R), and x, (xn)n∈N ∈ l1(R) are the only ele-

ments that verify y = T (x) and yn = T (xn) for each n ∈ N. In these conditions ϕ̃ is the only

extension of ϕ to AP (R), that is, ϕ ∈R and therefore it follows that MC(APW (R)) ⊆R.

Due to the fact MC(APW (R)) is dense in M(APW (R)) and MC(APW (R)) ⊆ R ⊆
M(APW (R)), we get that R is dense in M(APW (R)), and due to the fact that R is a

closed set we have that R = M(APW (R)) as we wanted to prove.

5.8 Inverse Closedness of APp(R) in AP (R) and in L∞(R)

In order to establish the inverse closedness of APp(R) in AP (R), we are going to prove that

M(AP (R)) is homeomorphic to M(APp(R)), and we will also characterize the invertible

elements in APp(R).

The proof of the following theorem is analogous to that one of [8, Chapter 7, Section 3,

Theorem 3.4], where the authors considered the similar problem for some algebras Sand

S2 containing the subalgebras APW (R) and AP (R), respectively.

Theorem 5.8.1. Let ϕ ∈M(AP (R)). Then ψ := ϕ|APp(R) belongs to M(APp(R)), and all of the
non-null multiplicative linear functionals of APp(R) are exhausted by the functionals of this
kind, that is, M(AP (R)) is homeomorphic to M(APp(R)).

Proof. Applying Theorem 5.7.5, it follows that M(APW (R)) and M(AP (R)) are homeomor-

phic. Taking into account Theorem 5.4.3, that APW (R) is embedded densely in APp(R)

and APp(R) is embedded densely in AP (R), it follows that M(AP (R)) is homeomorphic to

M(APp(R)) as we wanted to prove.

We are now in position to prove the main result of this section.

Theorem 5.8.2 ([5, Proposition 19.4]). Let p ∈]1,+∞[. An element f ∈ APp(R) is invertible
if and only if

inf
x∈R
|f (x)| > 0.

Proof. Let f ∈ APp(R) be an invertible element. Taking into account Theorem 5.6.5, it

follows that

APp(R) ⊆ AP (R),
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consequently, f is also invertible in AP (R) and, applying Theorem 3.5.4, we get that

f ∈U (R) and also that

inf
x∈R
|f (x)| > 0.

Suppose now that f ∈ APp(R) verifies

inf
x∈R
|f (x)| > 0.

In these conditions, using Theorem 2.2.4, we get that f is invertible in AP (R) and, conse-

quently, applying Theorem 5.3.3, we get that

ϕ(f ) , 0

for each ϕ ∈M(AP (R)). Suppose, by contradiction, that there exists ϕ0 ∈M(APp(R)) such

that ϕ0(f ) = 0. Then, taking into account Theorem 5.8.1, it follows that M(AP (R)) is

homeomorphic to M(APp(R)) and thus there is ϕ∗0 ∈M(AP (R)) that verifies

ϕ0(a) = ϕ∗0(a)

for every a ∈ APp(R). Therefore we have

ϕ∗0(f ) = ϕ0(f ) = 0,

which is impossible because f is invertible inAP (R).Henceϕ(f ) , 0 for anyϕ ∈M(APp(R))

which implies, by Theorem 5.3.3, that f is invertible in APp(R) as we wanted to prove.

Applying the previous theorem, our desired result is immediate.

Theorem 5.8.3 ([5, Proposition 19.4]). The algebra APp(R) is inverse-closed in AP (R), and
therefore is inverse-closed in L∞(R).

Proof. Let ψ ∈ APp(R) such that ψ is invertible in AP (R). In these conditions, using Theo-

rems 2.2.4 and 3.5.4, we have that ψ ∈U (R) and

inf
x∈R
|ψ(x)| > 0.

Applying Theorem 5.8.2, we conclude that ψ is also invertible in APp(R) as we wanted to

prove.
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