Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/145396| Título: | Comparing Handcrafted Features and Deep Neural Representations for Domain Generalization in Human Activity Recognition |
| Autor: | Bento, Nuno Rebelo, Joana Barandas, Marília Carreiro, André V. Campagner, Andrea Cabitza, Federico Gamboa, Hugo |
| Palavras-chave: | accelerometer deep learning domain generalization human activity recognition Analytical Chemistry Information Systems Biochemistry Atomic and Molecular Physics, and Optics Instrumentation Electrical and Electronic Engineering |
| Data: | 27-Set-2022 |
| Citação: | Bento, N., Rebelo, J., Barandas, M., Carreiro, A. V., Campagner, A., Cabitza, F., & Gamboa, H. (2022). Comparing Handcrafted Features and Deep Neural Representations for Domain Generalization in Human Activity Recognition. Sensors, 22(19), Article 7324. https://doi.org/10.3390/s22197324 |
| Resumo: | Human Activity Recognition (HAR) has been studied extensively, yet current approaches are not capable of generalizing across different domains (i.e., subjects, devices, or datasets) with acceptable performance. This lack of generalization hinders the applicability of these models in real-world environments. As deep neural networks are becoming increasingly popular in recent work, there is a need for an explicit comparison between handcrafted and deep representations in Out-of-Distribution (OOD) settings. This paper compares both approaches in multiple domains using homogenized public datasets. First, we compare several metrics to validate three different OOD settings. In our main experiments, we then verify that even though deep learning initially outperforms models with handcrafted features, the situation is reversed as the distance from the training distribution increases. These findings support the hypothesis that handcrafted features may generalize better across specific domains. |
| Peer review: | yes |
| URI: | http://hdl.handle.net/10362/145396 |
| DOI: | https://doi.org/10.3390/s22197324 |
| ISSN: | 1424-8220 |
| Aparece nas colecções: | FCT: DF - Artigos em revista internacional com arbitragem científica |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Comparing_Handcrafted_Features_and_Deep_Neural_Representations_for_Domain_Generalization_in_Human_Activity_Recognition.pdf | 1,56 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











