Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/145059
Título: Schur-Finiteness (and Bass-Finiteness) Conjecture for Quadric Fibrations and Families of Sextic du Val del Pezzo Surfaces
Autor: Tabuada, Gonçalo
Palavras-chave: Bass-finiteness
conjecture
du Val del Pezzo surfaces
noncommutative algebraic geometry
noncommutative mixed motives
quadric fibrations
Schur-finiteness conjecture
Mathematics(all)
Data: 2020
Citação: Tabuada, G. (2020). Schur-Finiteness (and Bass-Finiteness) Conjecture for Quadric Fibrations and Families of Sextic du Val del Pezzo Surfaces. Documenta Mathematica, 25, 2339-2354. https://doi.org/10.25537/dm.2020v25.2339-2354
Resumo: Let Q → B be a quadric fibration and T → B a family of sextic du Val del Pezzo surfaces. Making use of the theory of noncommutative mixed motives, we establish a precise relation between the Schur-finiteness conjecture for Q, resp. for T, and the Schur-finiteness conjecture for B. As an application, we prove the Schur-finiteness conjecture for Q, resp. for T, when B is low-dimensional. Along the way, we obtain a proof of the Schur-finiteness conjecture for smooth complete intersections of two or three quadric hypersurfaces. Finally, we prove similar results for the Bass-finiteness conjecture.
Descrição: The author is grateful to Joseph Ayoub for useful e-mail exchanges concerning the Schur-finiteness conjecture, and to the anonymous referee for her/his comments and for suggesting Remark 10. The author also would like to thank the Hausdorff Institute for Mathematics (HIM) in Bonn for its hospitality.
Peer review: yes
URI: http://hdl.handle.net/10362/145059
DOI: https://doi.org/10.25537/dm.2020v25.2339-2354
ISSN: 1431-0635
Aparece nas colecções:FCT: DM - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
10012082000.pdf233,25 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.