Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/145059
Título: | Schur-Finiteness (and Bass-Finiteness) Conjecture for Quadric Fibrations and Families of Sextic du Val del Pezzo Surfaces |
Autor: | Tabuada, Gonçalo |
Palavras-chave: | Bass-finiteness conjecture du Val del Pezzo surfaces noncommutative algebraic geometry noncommutative mixed motives quadric fibrations Schur-finiteness conjecture Mathematics(all) |
Data: | 2020 |
Citação: | Tabuada, G. (2020). Schur-Finiteness (and Bass-Finiteness) Conjecture for Quadric Fibrations and Families of Sextic du Val del Pezzo Surfaces. Documenta Mathematica, 25, 2339-2354. https://doi.org/10.25537/dm.2020v25.2339-2354 |
Resumo: | Let Q → B be a quadric fibration and T → B a family of sextic du Val del Pezzo surfaces. Making use of the theory of noncommutative mixed motives, we establish a precise relation between the Schur-finiteness conjecture for Q, resp. for T, and the Schur-finiteness conjecture for B. As an application, we prove the Schur-finiteness conjecture for Q, resp. for T, when B is low-dimensional. Along the way, we obtain a proof of the Schur-finiteness conjecture for smooth complete intersections of two or three quadric hypersurfaces. Finally, we prove similar results for the Bass-finiteness conjecture. |
Descrição: | The author is grateful to Joseph Ayoub for useful e-mail exchanges concerning the Schur-finiteness conjecture, and to the anonymous referee for her/his comments and for suggesting Remark 10. The author also would like to thank the Hausdorff Institute for Mathematics (HIM) in Bonn for its hospitality. |
Peer review: | yes |
URI: | http://hdl.handle.net/10362/145059 |
DOI: | https://doi.org/10.25537/dm.2020v25.2339-2354 |
ISSN: | 1431-0635 |
Aparece nas colecções: | FCT: DM - Artigos em revista internacional com arbitragem científica |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
10012082000.pdf | 233,25 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.