Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/142597
Título: | AUTOMOTIVE |
Autor: | Esteves, Telma Pinto, João Ribeiro Ferreira, Pedro M. Costa, Pedro Amaro Rodrigues, Lourenço Abrunhosa Antunes, Inês Lopes, Gabriel Gamito, Pedro Abrantes, Arnaldo J. Jorge, Pedro M. Lourenço, Andre Sequeira, Ana F. Cardoso, Jaime S. Rebelo, Ana |
Palavras-chave: | Biometrics biosignals computer vision data driver drowsiness simulator vehicles Computer Science(all) Materials Science(all) Engineering(all) Electrical and Electronic Engineering |
Data: | 2021 |
Citação: | Esteves, T., Pinto, J. R., Ferreira, P. M., Costa, P. A., Rodrigues, L. A., Antunes, I., Lopes, G., Gamito, P., Abrantes, A. J., Jorge, P. M., Lourenço, A., Sequeira, A. F., Cardoso, J. S., & Rebelo, A. (2021). AUTOMOTIVE: A Case Study on AUTOmatic multiMOdal Drowsiness detecTIon for smart VEhicles. IEEE Access, 9, 153678-153700. https://doi.org/10.1109/ACCESS.2021.3128016 |
Resumo: | As technology and artificial intelligence conquer a place under the spotlight in the automotive world, driver drowsiness monitoring systems have sparked much interest as a way to increase safety and avoid sleepiness-related accidents. Such technologies, however, stumble upon the observation that each driver presents a distinct set of behavioral and physiological manifestations of drowsiness, thus rendering its objective assessment a non-trivial process. The AUTOMOTIVE project studied the application of signal processing and machine learning techniques for driver-specific drowsiness detection in smart vehicles, enabled by immersive driving simulators. More broadly, comprehensive research on biometrics using the electrocardiogram (ECG) and face enables the continuous learning of subject-specific models of drowsiness for more efficient monitoring. This paper aims to offer a holistic but comprehensive view of the research and development work conducted for the AUTOMOTIVE project across the various addressed topics and how it ultimately brings us closer to the target of improved driver drowsiness monitoring. |
Descrição: | Publisher Copyright: © 2013 IEEE. |
Peer review: | yes |
URI: | http://hdl.handle.net/10362/142597 |
DOI: | https://doi.org/10.1109/ACCESS.2021.3128016 |
ISSN: | 2169-3536 |
Aparece nas colecções: | FCT: DF - Artigos em revista internacional com arbitragem científica |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
AUTOMOTIVE_A_Case_Study_on_AUTOmatic_multiMOdal_Drowsiness_detecTIon_for_smart_VEhicles.pdf | 4,12 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.