Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/142597
Título: AUTOMOTIVE
Autor: Esteves, Telma
Pinto, João Ribeiro
Ferreira, Pedro M.
Costa, Pedro Amaro
Rodrigues, Lourenço Abrunhosa
Antunes, Inês
Lopes, Gabriel
Gamito, Pedro
Abrantes, Arnaldo J.
Jorge, Pedro M.
Lourenço, Andre
Sequeira, Ana F.
Cardoso, Jaime S.
Rebelo, Ana
Palavras-chave: Biometrics
biosignals
computer vision
data
driver
drowsiness
simulator
vehicles
Computer Science(all)
Materials Science(all)
Engineering(all)
Electrical and Electronic Engineering
Data: 2021
Citação: Esteves, T., Pinto, J. R., Ferreira, P. M., Costa, P. A., Rodrigues, L. A., Antunes, I., Lopes, G., Gamito, P., Abrantes, A. J., Jorge, P. M., Lourenço, A., Sequeira, A. F., Cardoso, J. S., & Rebelo, A. (2021). AUTOMOTIVE: A Case Study on AUTOmatic multiMOdal Drowsiness detecTIon for smart VEhicles. IEEE Access, 9, 153678-153700. https://doi.org/10.1109/ACCESS.2021.3128016
Resumo: As technology and artificial intelligence conquer a place under the spotlight in the automotive world, driver drowsiness monitoring systems have sparked much interest as a way to increase safety and avoid sleepiness-related accidents. Such technologies, however, stumble upon the observation that each driver presents a distinct set of behavioral and physiological manifestations of drowsiness, thus rendering its objective assessment a non-trivial process. The AUTOMOTIVE project studied the application of signal processing and machine learning techniques for driver-specific drowsiness detection in smart vehicles, enabled by immersive driving simulators. More broadly, comprehensive research on biometrics using the electrocardiogram (ECG) and face enables the continuous learning of subject-specific models of drowsiness for more efficient monitoring. This paper aims to offer a holistic but comprehensive view of the research and development work conducted for the AUTOMOTIVE project across the various addressed topics and how it ultimately brings us closer to the target of improved driver drowsiness monitoring.
Descrição: Publisher Copyright: © 2013 IEEE.
Peer review: yes
URI: http://hdl.handle.net/10362/142597
DOI: https://doi.org/10.1109/ACCESS.2021.3128016
ISSN: 2169-3536
Aparece nas colecções:FCT: DF - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
AUTOMOTIVE_A_Case_Study_on_AUTOmatic_multiMOdal_Drowsiness_detecTIon_for_smart_VEhicles.pdf4,12 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.