Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/134627| Título: | High-resolution Soil Moisture Retrieval Using Sentinel-1 Data for Evaluating Regenerative Agriculture: A feasibility study from Alentejo, Portugal |
| Autor: | Petersen, Syver Jahren |
| Orientador: | Torres-Sospedra, Joaquín Kuntz, Steffen Meyer, Hanna |
| Data de Defesa: | 2-Mar-2022 |
| Resumo: | Timely, reliable, and cost-efficient information about soil moisture is important for supporting agricultural practitioners in monitoring the impact of alternative agricultural practices. Regenerative agriculture is increasingly gaining traction; however, farmers lack easy access to information on key agricultural parameters such as soil moisture. Therefore, this study seeks to explore the feasibility of soil moisture estimation at high-resolution (around 10 m) using Sentinel-1 remote sensing radar data. A machine learning model was developed using a random forest regression algorithm with a combination of SAR-based, topography and Seninel-2 optical-based data as inputs. Through a k-fold cross-validation of the model, an average r-squared (R²) of 0.17, a root mean squared error (RMSE) of 3.51 (% VMC), and an mean absolute percentage error (MAPE) of 83.34, was achieved. |
| Descrição: | Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies |
| URI: | http://hdl.handle.net/10362/134627 |
| Designação: | Mestrado em Tecnologias Geoespaciais |
| Aparece nas colecções: | NIMS - MSc Dissertations Geospatial Technologies (Erasmus-Mundus) |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| TGEO0278.pdf | 1,27 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











