Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/134627
Título: High-resolution Soil Moisture Retrieval Using Sentinel-1 Data for Evaluating Regenerative Agriculture: A feasibility study from Alentejo, Portugal
Autor: Petersen, Syver Jahren
Orientador: Torres-Sospedra, Joaquín
Kuntz, Steffen
Meyer, Hanna
Data de Defesa: 2-Mar-2022
Resumo: Timely, reliable, and cost-efficient information about soil moisture is important for supporting agricultural practitioners in monitoring the impact of alternative agricultural practices. Regenerative agriculture is increasingly gaining traction; however, farmers lack easy access to information on key agricultural parameters such as soil moisture. Therefore, this study seeks to explore the feasibility of soil moisture estimation at high-resolution (around 10 m) using Sentinel-1 remote sensing radar data. A machine learning model was developed using a random forest regression algorithm with a combination of SAR-based, topography and Seninel-2 optical-based data as inputs. Through a k-fold cross-validation of the model, an average r-squared (R²) of 0.17, a root mean squared error (RMSE) of 3.51 (% VMC), and an mean absolute percentage error (MAPE) of 83.34, was achieved.
Descrição: Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
URI: http://hdl.handle.net/10362/134627
Designação: Mestrado em Tecnologias Geoespaciais
Aparece nas colecções:NIMS - MSc Dissertations Geospatial Technologies (Erasmus-Mundus)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
TGEO0278.pdf1,27 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.