Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/134350
Título: Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks
Autor: Pereira, Maria Elias
Deuermeier, Jonas
Freitas, Pedro
Barquinha, Pedro
Zhang, Weidong
Martins, Rodrigo
Fortunato, Elvira
Kiazadeh, Asal
Palavras-chave: Materials Science(all)
Engineering(all)
Data: 1-Jan-2022
Citação: Pereira, M. E., Deuermeier, J., Freitas, P., Barquinha, P., Zhang, W., Martins, R., Fortunato, E., & Kiazadeh, A. (2022). Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks. APL Materials, 10(1), Article 011113. https://doi.org/10.1063/5.0073056
Resumo: Neuromorphic computation based on resistive switching devices represents a relevant hardware alternative for artificial deep neural networks. For the highest accuracies on pattern recognition tasks, an analog, linear, and symmetric synaptic weight is essential. Moreover, the resistive switching devices should be integrated with the supporting electronics, such as thin-film transistors (TFTs), to solve crosstalk issues on the crossbar arrays. Here, an a-Indium-gallium-zinc-oxide (IGZO) memristor is proposed, with Mo and Ti/Mo as bottom and top contacts, with forming-free analog switching ability for an upcoming integration on crossbar arrays with a-IGZO TFTs for neuromorphic hardware systems. The development of a TFT compatible fabrication process is accomplished, which results in an a-IGZO memristor with a high stability and low cycle-to-cycle variability. The synaptic behavior through potentiation and depression tests using an identical spiking scheme is presented, and the modulation of the plasticity characteristics by applying non-identical spiking schemes is also demonstrated. The pattern recognition accuracy, using MNIST handwritten digits dataset, reveals a maximum of 91.82% accuracy, which is a promising result for crossbar implementation. The results displayed here reveal the potential of Mo/a-IGZO/Ti/Mo memristors for neuromorphic hardware.
Descrição: UIDB/50025/2020-202 DFA/BD/8335/2020 No. PTDC/NAN-MAT/30812/2017 Grant Nos. EP/M006727/1 EP/S000259/1
Peer review: yes
URI: http://hdl.handle.net/10362/134350
DOI: https://doi.org/10.1063/5.0073056
ISSN: 2166-532X
Aparece nas colecções:FCT: DCM - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Tailoring_the_synaptic_properties_of_a_IGZO_memristors_for_artificial_deep_neural_networks.pdf8,51 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.