Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/132797
Título: Human activity recognition for indoor localization using smartphone inertial sensors
Autor: Moreira, Dinis
Barandas, Marília
Alves, Pedro
Santos, Ricardo
Leonardo, Ricardo
Vieira, Pedro
Gamboa, Hugo
Palavras-chave: Deep learning
Human activity recognition
Indoor location
Inertial sensors
Smartphone
Analytical Chemistry
Information Systems
Atomic and Molecular Physics, and Optics
Biochemistry
Instrumentation
Electrical and Electronic Engineering
Data: 21-Set-2021
Citação: Moreira, D., Barandas, M., Alves, P., Santos, R., Leonardo, R., Vieira, P., & Gamboa, H. (2021). Human activity recognition for indoor localization using smartphone inertial sensors. Sensors, 21(18), Article 6316. https://doi.org/10.3390/s21186316
Resumo: With the fast increase in the demand for location-based services and the proliferation of smartphones, the topic of indoor localization is attracting great interest. In indoor environments, users’ performed activities carry useful semantic information. These activities can then be used by indoor localization systems to confirm users’ current relative locations in a building. In this paper, we propose a deep-learning model based on a Convolutional Long Short-Term Memory (ConvLSTM) network to classify human activities within the indoor localization scenario using smartphone inertial sensor data. Results show that the proposed human activity recognition (HAR) model accurately identifies nine types of activities: not moving, walking, running, going up in an elevator, going down in an elevator, walking upstairs, walking downstairs, or going up and down a ramp. Moreover, predicted human activities were integrated within an existing indoor positioning system and evaluated in a multi-story building across several testing routes, with an average positioning error of 2.4 m. The results show that the inclusion of human activity information can reduce the overall localization error of the system and actively contribute to the better identification of floor transitions within a building. The conducted experiments demonstrated promising results and verified the effectiveness of using human activity-related information for indoor localization.
Descrição: POCI-01-0247-FEDER-033479
Peer review: yes
URI: http://hdl.handle.net/10362/132797
DOI: https://doi.org/10.3390/s21186316
ISSN: 1424-8220
Aparece nas colecções:FCT: DF - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
sensors_21_06316_v2.pdf2,38 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.