Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/130711
Registo completo
Campo DCValorIdioma
dc.contributor.authorJakobovic, Domagoj-
dc.contributor.authorManzoni, Luca-
dc.contributor.authorMariot, Luca-
dc.contributor.authorPicek, Stjepan-
dc.contributor.authorCastelli, Mauro-
dc.date.accessioned2022-01-12T23:23:39Z-
dc.date.available2022-01-12T23:23:39Z-
dc.date.issued2021-06-26-
dc.identifier.isbn9781450383509-
dc.identifier.otherPURE: 32995659-
dc.identifier.otherPURE UUID: 31485323-129e-4bb0-a051-8898e3ad1f18-
dc.identifier.otherScopus: 85110081117-
dc.identifier.otherWOS: 000773791800093-
dc.identifier.otherORCID: /0000-0002-8793-1451/work/98020292-
dc.identifier.urihttp://hdl.handle.net/10362/130711-
dc.descriptionJakobovic, D., Manzoni, L., Mariot, L., Picek, S., & Castelli, M. (2021). CoInGP: Convolutional inpainting with genetic programming. In GECCO 2021 - Proceedings of the 2021 Genetic and Evolutionary Computation Conference (pp. 795-803). (GECCO 2021 - Proceedings of the 2021 Genetic and Evolutionary Computation Conference). Association for Computing Machinery, Inc. https://doi.org/10.1145/3449639.3459346-
dc.description.abstractWe investigate the use of Genetic Programming (GP) as a convolutional predictor for missing pixels in images. The training phase is performed by sweeping a sliding window over an image, where the pixels on the border represent the inputs of a GP tree. The output of the tree is taken as the predicted value for the central pixel. We consider two topologies for the sliding window, namely the Moore and the Von Neumann neighborhood. The best GP tree scoring the lowest prediction error over the training set is then used to predict the pixels in the test set. We experimentally assess our approach through two experiments. In the first one, we train a GP tree over a subset of 1000 complete images from the MNIST dataset. The results show that GP can learn the distribution of the pixels with respect to a simple baseline predictor, with no significant differences observed between the two neighborhoods. In the second experiment, we train a GP convolutional predictor on two degraded images, removing around 20% of their pixels. In this case, we observe that the Moore neighborhood works better, although the Von Neumann neighborhood allows for a larger training set.en
dc.format.extent9-
dc.language.isoeng-
dc.publisherACM - Association for Computing Machinery-
dc.relationinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/DSAIPA%2FDS%2F0022%2F2018/PT-
dc.rightsopenAccess-
dc.subjectConvolution-
dc.subjectGenetic programming-
dc.subjectImages-
dc.subjectInpainting-
dc.subjectPrediction-
dc.subjectSupervised learning-
dc.subjectGenetics-
dc.subjectComputational Mathematics-
dc.titleCoInGP-
dc.typeconferenceObject-
degois.publication.firstPage795-
degois.publication.lastPage803-
degois.publication.titleGECCO 2021 - Proceedings of the 2021 Genetic and Evolutionary Computation Conference-
degois.publication.title2021 Genetic and Evolutionary Computation Conference, GECCO 2021-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.1145/3449639.3459346-
dc.description.versionauthorsversion-
dc.description.versionpublished-
dc.title.subtitleConvolutional inpainting with genetic programming-
dc.contributor.institutionInformation Management Research Center (MagIC) - NOVA Information Management School-
dc.contributor.institutionNOVA Information Management School (NOVA IMS)-
Aparece nas colecções:NIMS: MagIC - Documentos de conferências internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
CoInGP_Convolutional_Inpainting_with_Genetic_Programming.pdf981,42 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.