Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/125016
Registo completo
Campo DCValorIdioma
dc.contributor.authorBrasil, Sandra-
dc.contributor.authorNeves, Cátia José-
dc.contributor.authorRijoff, Tatiana-
dc.contributor.authorFalcão, Marta-
dc.contributor.authorValadão, Gonçalo-
dc.contributor.authorVideira, Paula A.-
dc.contributor.authordos Reis Ferreira, Vanessa-
dc.date.accessioned2021-09-23T00:51:52Z-
dc.date.available2021-09-23T00:51:52Z-
dc.date.issued2021-05-05-
dc.identifier.citationBrasil, S., Neves, C. J., Rijoff, T., Falcão, M., Valadão, G., Videira, P. A., & dos Reis Ferreira, V. (2021). Artificial Intelligence in Epigenetic Studies: Shedding Light on Rare Diseases. Frontiers in Molecular Biosciences, 8, Article 648012. https://doi.org/10.3389/fmolb.2021.648012-
dc.identifier.issn2296-889X-
dc.identifier.otherPURE: 31612804-
dc.identifier.otherPURE UUID: 6faa2945-5d90-4fa5-9469-e66e59634407-
dc.identifier.otherScopus: 85105984241-
dc.identifier.otherPubMed: 34026829-
dc.identifier.otherPubMedCentral: PMC8131862-
dc.identifier.otherWOS: 000651756100001-
dc.identifier.urihttp://hdl.handle.net/10362/125016-
dc.descriptionFunding Information: Funding. This work was supported by the CDG Professionals and Patient Associations International Network (CDG & Allies ?PPAIN) and Portuguese Association for Congenital Disorders of Glycosylation (APCDG). The authors confirmed independence from any sponsors.-
dc.description.abstractMore than 7,000 rare diseases (RDs) exist worldwide, affecting approximately 350 million people, out of which only 5% have treatment. The development of novel genome sequencing techniques has accelerated the discovery and diagnosis in RDs. However, most patients remain undiagnosed. Epigenetics has emerged as a promise for diagnosis and therapies in common disorders (e.g., cancer) with several epimarkers and epidrugs already approved and used in clinical practice. Hence, it may also become an opportunity to uncover new disease mechanisms and therapeutic targets in RDs. In this “big data” age, the amount of information generated, collected, and managed in (bio)medicine is increasing, leading to the need for its rapid and efficient collection, analysis, and characterization. Artificial intelligence (AI), particularly deep learning, is already being successfully applied to analyze genomic information in basic research, diagnosis, and drug discovery and is gaining momentum in the epigenetic field. The application of deep learning to epigenomic studies in RDs could significantly boost discovery and therapy development. This review aims to collect and summarize the application of AI tools in the epigenomic field of RDs. The lower number of studies found, specific for RDs, indicate that this is a field open to expansion, following the results obtained for other more common disorders.en
dc.language.isoeng-
dc.rightsopenAccess-
dc.subjectartificial intelligence-
dc.subjectepigenetics-
dc.subjectepigenomic-
dc.subjectmachine learning-
dc.subjectpersonalized medicine-
dc.subjectrare diseases (RD)-
dc.subjectBiochemistry-
dc.subjectBiochemistry, Genetics and Molecular Biology (miscellaneous)-
dc.subjectMolecular Biology-
dc.subjectSDG 3 - Good Health and Well-being-
dc.titleArtificial Intelligence in Epigenetic Studies-
dc.typereview-
degois.publication.titleFrontiers in Molecular Biosciences-
degois.publication.volume8-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.3389/fmolb.2021.648012-
dc.description.versionpublishersversion-
dc.description.versionpublished-
dc.title.subtitleShedding Light on Rare Diseases-
dc.contributor.institutionDCV - Departamento de Ciências da Vida-
dc.contributor.institutionUCIBIO - Applied Molecular Biosciences Unit-
Aparece nas colecções:FCT: DCV - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
fmolb_08_648012.pdf912,48 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.