Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/113985
Título: Data fusion approach for eucalyptus trees identification
Autor: Oliveira, Diogo
Martins, Leonardo
Mora, André
Damásio, Carlos
Caetano, Mário
Fonseca, José
Ribeiro, Rita A.
Palavras-chave: Earth and Planetary Sciences(all)
SDG 15 - Life on Land
Data: 2021
Resumo: Remote sensing is based on the extraction of data, acquired by satellites or aircrafts, through multispectral images, that allow their remote analysis and classification. Analysing those images with data fusion techniques is a promising approach for identification and classification of forest types. Fusion techniques can aggregate various sources of heterogeneous information to generate value-added maps, facilitating forest-type classification. This work applies a data fusion algorithm, denoted FIF (Fuzzy Information Fusion), which combines computational intelligence techniques with multicriteria concepts and techniques, to automatically distinguish Eucalyptus trees from satellite images. The algorithm customization was performed with a Portuguese area planted with Eucalyptus. After customizing and validating the approach with several representative scenarios to assess its suitability for automatic classification of Eucalyptus, we tested on a large tile obtaining a sensitivity of 69.61%, with a specificity of 99.43%, and an overall accuracy of 98.19%. This work demonstrates the potential of our approach to automatically classify specific forest types from satellite images, since this is a novel approach dedicated to the identification of eucalyptus trees.
Descrição: UIDB/00066/2020 DSAIPA/AI/0100/2018
Peer review: yes
URI: http://hdl.handle.net/10362/113985
DOI: https://doi.org/10.1080/01431161.2021.1883198
ISSN: 0143-1161
Aparece nas colecções:Home collection (FCT)
NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Data_fusion_approach_for_eucalyptus_trees_identification.pdf10,35 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.