Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/109738
Título: Biased artificial intelligence - algorithmic fairness and human perception on biased AI
Autor: Machill, Sidney Anna
Orientador: Pinheiro, Flávio Luís Portas
Orghian, Diana
Palavras-chave: Artificial intelligence
Biased artificial intelligence
Machine learning
Algorithmic fairness
Algorithmic perception
Discrimination
Data de Defesa: 6-Nov-2020
Resumo: As artificial intelligence (AI) is given more power in many decisions, potential resulting biases in respect to gender, race, and other minorities have to be analyzed and reduced to a minimum. Machine learning (ML) models are implemented in various areas and can decide who gets invited to an interview, granted a loan, gets the right cancer treatment, or goes to prison. Consequently, biases can have a crucial negative impact on people’s life. This thesis highlights previous research in this field, shows its limitations and breaks down the content into its core components in s systematic manner. Therefore, types of existing biases, and areas where AI bias is most components in a systematic manner. Therefore, types of existing biases, and areas where AI is most prevalent are defined. Further, root causes for discriminating algorithms are analyzed according to the AI model creation chain: data, coder, model, usage. An abundance of fairness measurements is classified and elaborated in a tabular format. Thereafter, bias mitigation techniques naming pre-processing, in-processing, and post-processing for ML algorithms are summarized, critically analyzed and limitations of research for unsupervised learning fairness measures are indicated.
Descrição: Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies Management
URI: http://hdl.handle.net/10362/109738
Designação: Mestrado em Gestão de Informação, especialização em Gestão dos Sistemas e Tecnologias de Informação
Aparece nas colecções:NIMS - Dissertações de Mestrado em Gestão da Informação (Information Management)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
TGI0357.pdf2,76 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.