Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/108181
Registo completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Rodrigues, Nuno M. | - |
dc.contributor.author | Silva, Sara | - |
dc.contributor.author | Vanneschi, Leonardo | - |
dc.date.accessioned | 2020-12-04T23:17:59Z | - |
dc.date.available | 2020-12-04T23:17:59Z | - |
dc.date.issued | 2020-07 | - |
dc.identifier.isbn | 9781728169293 | - |
dc.identifier.other | PURE: 26536426 | - |
dc.identifier.other | PURE UUID: 7601d700-55e7-4424-8afb-1909560baef0 | - |
dc.identifier.other | Scopus: 85092063390 | - |
dc.identifier.other | WOS: 000703998202042 | - |
dc.identifier.other | ORCID: /0000-0003-4732-3328/work/151426776 | - |
dc.identifier.uri | http://hdl.handle.net/10362/108181 | - |
dc.description | Rodrigues, N. M., Silva, S., & Vanneschi, L. (2020). A Study of Fitness Landscapes for Neuroevolution. In 2020 IEEE Congress on Evolutionary Computation, CEC 2020: Conference Proceedings [9185783] (2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CEC48606.2020.9185783 | - |
dc.description.abstract | Fitness landscapes are a useful concept to study the dynamics of meta-heuristics. In the last two decades, they have been applied with success to estimate the optimization power of several types of evolutionary algorithms, including genetic algorithms and genetic programming. However, so far they have never been used to study the performance of machine learning algorithms on unseen data, and they have never been applied to neuroevolution. This paper aims at filling both these gaps, applying for the first time fitness landscapes to neuroevolution and using them to infer useful information about the predictive ability of the method. More specifically, we use a grammar-based approach to generate convolutional neural networks, and we study the dynamics of three different mutations to evolve them. To characterize fitness landscapes, we study autocorrelation and entropic measure of ruggedness. The results show that these measures are appropriate for estimating both the optimization power and the generalization ability of the considered neuroevolution configurations. | en |
dc.language.iso | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | - |
dc.relation | info:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FCCI-CIF%2F29877%2F2017/PT | - |
dc.relation | info:eu-repo/grantAgreement/FCT/3599-PPCDT/DSAIPA%2FDS%2F0113%2F2019/PT | - |
dc.relation | info:eu-repo/grantAgreement/FCT/3599-PPCDT/DSAIPA%2FDS%2F0022%2F2018/PT | - |
dc.relation | info:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FCCI-INF%2F29168%2F2017/PT | - |
dc.rights | restrictedAccess | - |
dc.subject | Autocorrelation | - |
dc.subject | Convolutional Neural Networks | - |
dc.subject | Entropic Measure of Ruggedness | - |
dc.subject | Fitness Landscapes | - |
dc.subject | Neuroevolution | - |
dc.subject | Control and Optimization | - |
dc.subject | Decision Sciences (miscellaneous) | - |
dc.subject | Artificial Intelligence | - |
dc.subject | Computer Vision and Pattern Recognition | - |
dc.subject | Hardware and Architecture | - |
dc.title | A Study of Fitness Landscapes for Neuroevolution | - |
dc.type | conferenceObject | - |
degois.publication.title | 2020 IEEE Congress on Evolutionary Computation, CEC 2020 | - |
degois.publication.title | 2020 IEEE Congress on Evolutionary Computation, CEC 2020 | - |
dc.peerreviewed | yes | - |
dc.identifier.doi | https://doi.org/10.1109/CEC48606.2020.9185783 | - |
dc.description.version | preprint | - |
dc.description.version | published | - |
dc.contributor.institution | Information Management Research Center (MagIC) - NOVA Information Management School | - |
dc.contributor.institution | NOVA Information Management School (NOVA IMS) | - |
Aparece nas colecções: | NIMS: MagIC - Documentos de conferências internacionais |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Study_Fitness_Landscapes_Neuroevolution.pdf | 259,53 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.