Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/108181
Registo completo
Campo DCValorIdioma
dc.contributor.authorRodrigues, Nuno M.-
dc.contributor.authorSilva, Sara-
dc.contributor.authorVanneschi, Leonardo-
dc.date.accessioned2020-12-04T23:17:59Z-
dc.date.available2020-12-04T23:17:59Z-
dc.date.issued2020-07-
dc.identifier.isbn9781728169293-
dc.identifier.otherPURE: 26536426-
dc.identifier.otherPURE UUID: 7601d700-55e7-4424-8afb-1909560baef0-
dc.identifier.otherScopus: 85092063390-
dc.identifier.otherWOS: 000703998202042-
dc.identifier.otherORCID: /0000-0003-4732-3328/work/151426776-
dc.identifier.urihttp://hdl.handle.net/10362/108181-
dc.descriptionRodrigues, N. M., Silva, S., & Vanneschi, L. (2020). A Study of Fitness Landscapes for Neuroevolution. In 2020 IEEE Congress on Evolutionary Computation, CEC 2020: Conference Proceedings [9185783] (2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CEC48606.2020.9185783-
dc.description.abstractFitness landscapes are a useful concept to study the dynamics of meta-heuristics. In the last two decades, they have been applied with success to estimate the optimization power of several types of evolutionary algorithms, including genetic algorithms and genetic programming. However, so far they have never been used to study the performance of machine learning algorithms on unseen data, and they have never been applied to neuroevolution. This paper aims at filling both these gaps, applying for the first time fitness landscapes to neuroevolution and using them to infer useful information about the predictive ability of the method. More specifically, we use a grammar-based approach to generate convolutional neural networks, and we study the dynamics of three different mutations to evolve them. To characterize fitness landscapes, we study autocorrelation and entropic measure of ruggedness. The results show that these measures are appropriate for estimating both the optimization power and the generalization ability of the considered neuroevolution configurations.en
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.relationinfo:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FCCI-CIF%2F29877%2F2017/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/DSAIPA%2FDS%2F0113%2F2019/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/DSAIPA%2FDS%2F0022%2F2018/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FCCI-INF%2F29168%2F2017/PT-
dc.rightsrestrictedAccess-
dc.subjectAutocorrelation-
dc.subjectConvolutional Neural Networks-
dc.subjectEntropic Measure of Ruggedness-
dc.subjectFitness Landscapes-
dc.subjectNeuroevolution-
dc.subjectControl and Optimization-
dc.subjectDecision Sciences (miscellaneous)-
dc.subjectArtificial Intelligence-
dc.subjectComputer Vision and Pattern Recognition-
dc.subjectHardware and Architecture-
dc.titleA Study of Fitness Landscapes for Neuroevolution-
dc.typeconferenceObject-
degois.publication.title2020 IEEE Congress on Evolutionary Computation, CEC 2020-
degois.publication.title2020 IEEE Congress on Evolutionary Computation, CEC 2020-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.1109/CEC48606.2020.9185783-
dc.description.versionpreprint-
dc.description.versionpublished-
dc.contributor.institutionInformation Management Research Center (MagIC) - NOVA Information Management School-
dc.contributor.institutionNOVA Information Management School (NOVA IMS)-
Aparece nas colecções:NIMS: MagIC - Documentos de conferências internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Study_Fitness_Landscapes_Neuroevolution.pdf259,53 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.