Please use this identifier to cite or link to this item: http://hdl.handle.net/10362/97712
Title: Large-scale unconstrained optimization using separable cubic modeling and matrix-free subspace minimization
Author: Brás, C. P.
Martínez, José Mário
Raydan, M.
Keywords: Cubic modeling
Disk packing problem
Lanczos method
Newton-type methods
Smooth unconstrained minimization
Subspace minimization
Trust-region strategies
Control and Optimization
Computational Mathematics
Applied Mathematics
Issue Date: 1-Jan-2020
Citation: Brás, C. P., Martínez, J. M., & Raydan, M. (2020). Large-scale unconstrained optimization using separable cubic modeling and matrix-free subspace minimization. Computational Optimization And Applications, 75(1). Advance online publication. https://doi.org/10.1007/s10589-019-00138-1
Abstract: We present a new algorithm for solving large-scale unconstrained optimization problems that uses cubic models, matrix-free subspace minimization, and secant-type parameters for defining the cubic terms. We also propose and analyze a specialized trust-region strategy to minimize the cubic model on a properly chosen low-dimensional subspace, which is built at each iteration using the Lanczos process. For the convergence analysis we present, as a general framework, a model trust-region subspace algorithm with variable metric and we establish asymptotic as well as complexity convergence results. Preliminary numerical results, on some test functions and also on the well-known disk packing problem, are presented to illustrate the performance of the proposed scheme when solving large-scale problems.
Description: PRONEX-CNPq/FAPERJ (E-26/111.449/2010-APQ1), CEPID-Industrial Mathematics/FAPESP (Grant 2011/51305-02), FAPESP (Projects 2013/05475-7 and 2013/07375-0). Fundacao para a Ciencia e a Tecnologia- project UID/MAT/00297/2019 (CMA).
Peer review: yes
URI: http://hdl.handle.net/10362/97712
DOI: https://doi.org/10.1007/s10589-019-00138-1
ISSN: 0926-6003
Appears in Collections:FCT: DM - Artigos em revista internacional com arbitragem científica

Files in This Item:
File Description SizeFormat 
bmrJuly2019.pdf582,26 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.