Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/96606
Título: UAV Downwash-Based Terrain Classification Using Wiener-Khinchin and EMD Filters
Autor: Matos-Carvalho, João P.
Mora, André
Rato, Raul Tello
Mendonça, Ricardo
Fonseca, José M.
Palavras-chave: EMD
Image processing
IMF
Machine learning
Terrain classification
UAV
Wiener-Khinchin
Information Systems
Computer Networks and Communications
Information Systems and Management
Data: 1-Jan-2019
Editora: Springer
Citação: Matos-Carvalho, J. P., Mora, A., Rato, R. T., Mendonça, R., & Fonseca, J. M. (2019). UAV Downwash-Based Terrain Classification Using Wiener-Khinchin and EMD Filters. In L. M. Camarinha-Matos, R. Almeida, & J. Oliveira (Eds.), Technological Innovation for Industry and Service Systems - 10th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2019, Proceedings (pp. 83-90). (IFIP Advances in Information and Communication Technology; Vol. 553). Springer. https://doi.org/10.1007/978-3-030-17771-3_7
Resumo: Knowing how to identify terrain types is especially important in the autonomous navigation, mapping, decision making and detect landings areas. A recent area is in cooperation and improvement of autonomous behavior between robots. For example, an unmanned aerial vehicle (UAV) is used to identify a possible landing area or used in cooperation with other robots to navigate in unknown terrains. This paper presents a computer vision algorithm capable of identifying the terrain type where the UAV is flying, using its rotors’ downwash effect. The algorithm is a fusion between the frequency Wiener-Khinchin adapted and spatial Empirical Mode Decomposition (EMD) domains. In order to increase certainty in terrain identification, machine learning is also used. The system is validated using videos acquired onboard of a UAV with an RGB camera.
Descrição: This work was partially funded by FCT Strategic Program UID/EEA/00066/203 of the Center of Technologies and System (CTS) of UNINOVA - Institute for the Development of new Technologies.
Peer review: yes
URI: http://hdl.handle.net/10362/96606
DOI: https://doi.org/10.1007/978-3-030-17771-3_7
ISBN: 978-3-030-17770-6
978-3-030-17771-3
ISSN: 1868-4238
Aparece nas colecções:Home collection (FCT)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
4_DoCEIS.pdf428,2 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.