Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/90874
Título: | Emerging organic contaminants in wastewater: Understanding electrochemical reactors for triclosan and its by-products degradation |
Autor: | Magro, C. Mateus, E. P. Paz-Garcia, J. M. Ribeiro, A. B. |
Palavras-chave: | Emerging organic contaminants TriclosanBy-products Electrochemical process Electrokinetics Electro-degradation Environmental Engineering Environmental Chemistry Chemistry(all) Pollution Public Health, Environmental and Occupational Health Health, Toxicology and Mutagenesis SDG 6 - Clean Water and Sanitation |
Data: | Mai-2020 |
Citação: | Magro, C., Mateus, E. P., Paz-Garcia, J. M., & Ribeiro, A. B. (2020). Emerging organic contaminants in wastewater: Understanding electrochemical reactors for triclosan and its by-products degradation. Chemosphere, 247, Article 125758. https://doi.org/10.1016/j.chemosphere.2019.125758 |
Resumo: | Degradation technologies applied to emerging organic contaminants from human activities are one of the major water challenges in the contamination legacy. Triclosan is an emerging contaminant, commonly used as antibacterial agent in personal care products. Triclosan is stable, lipophilic and it is proved to have ecotoxicology effects in organics. This induces great concern since its elimination in wastewater treatment plants is not efficient and its by-products (e.g. methyl-triclosan, 2,4-dichlorophenol or 2,4,6-trichlorophenol) are even more hazardous to several environmental compartments. This work provides understanding of two different electrochemical reactors for the degradation of triclosan and its derivative by-products in effluent. A batch reactor and a flow reactor (mimicking a secondary settling tank in a wastewater treatment plant) were tested with two different working anodes: Ti/MMO and Nb/BDD. The degradation efficiency and kinetics were evaluated to find the best combination of current density, electrodes and set-up design. For both reactors the best electrode combination was achieved with Ti/MMO as anode. The batch reactor at 7 mA/cm2 during 4 h attained degradation rates below the detection limit for triclosan and 2,4,6-trichlorophenol and, 94% and 43% for 2,4-dichlorophenol and methyl triclosan, respectively. The flow reactor obtained, in approximately 1 h, degradation efficiencies between 41% and 87% for the four contaminants. This study suggests an alternative technology for emerging organic contaminants degradation, since the combination of a low current density with the flow and matrix induced disturbance increases and speeds up the compounds’ elimination in a real environmental matrix. |
Descrição: | UID/AMB/04085/2019 UID/FIS/00068/2019 PTDC/FIS-NAN/0909/2014 SFRH/BD/114674/2016 CTQ2017-90659-REDT (MCIUN, Spain). FEDER Andalucia 2014–2020” – UMA18-FEDERJA-279. |
Peer review: | yes |
URI: | http://hdl.handle.net/10362/90874 |
DOI: | https://doi.org/10.1016/j.chemosphere.2019.125758 |
ISSN: | 0045-6535 |
Aparece nas colecções: | FCT: DCEA - Artigos em revista internacional com arbitragem científica |
Ficheiros deste registo:
Ficheiro | Tamanho | Formato | |
---|---|---|---|
Emerging_organic_contaminants_in_wastewater_Revised_manuscript.docx | 108,65 kB | Unknown | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.