Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/70389
Registo completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Bergstra, Sytske Anne | - |
dc.contributor.author | Sepriano, Alexandre | - |
dc.contributor.author | Ramiro, Sofia | - |
dc.contributor.author | Landewé, Robert | - |
dc.date.accessioned | 2019-05-21T22:17:35Z | - |
dc.date.available | 2019-05-21T22:17:35Z | - |
dc.date.issued | 2019-04-01 | - |
dc.identifier.issn | 2044-6055 | - |
dc.identifier.other | PURE: 13256622 | - |
dc.identifier.other | PURE UUID: 52578128-51bc-4cab-b30e-75d63140b91b | - |
dc.identifier.other | Scopus: 85065299275 | - |
dc.identifier.other | PubMed: 31168417 | - |
dc.identifier.other | WOS: 000467325800007 | - |
dc.identifier.uri | http://www.scopus.com/inward/record.url?scp=85065299275&partnerID=8YFLogxK | - |
dc.description.abstract | Real-world data are increasingly available to investigate real-world' safety and efficacy. However, since treatment in observational studies is not randomly allocated, confounding by indication may occur, in which differences in patient characteristics may influence both treatment choices and treatment responses. A popular method to adjust for this type of bias is the use of propensity scores (PS). The PS is a score between 0 and 1 that reflects the likelihood per patient of receiving one of the treatment categories of interest conditional on a set of variables. At least in theory, in patients with similar PS, the treatment prescribed will be independent of these variables (pseudorandomisation). But researchers using PS sometimes fail to recognise important methodological flaws which can lead to spurious conclusions. These include perfect prediction of treatment allocation, untied observations and lack of generalisability due to oversimplification of complex clinical scenarios. In this viewpoint we will discuss the most commonly encountered flaws and provide a stepwise description on the estimation and use of PS, such that in future publications these flaws can be avoided. | en |
dc.language.iso | eng | - |
dc.rights | openAccess | - |
dc.subject | bias | - |
dc.subject | observational studies | - |
dc.subject | propensity scores | - |
dc.subject | treatment effects | - |
dc.subject | Rheumatology | - |
dc.subject | Immunology and Allergy | - |
dc.subject | Immunology | - |
dc.title | Three handy tips and a practical guide to improve your propensity score models | - |
dc.type | review | - |
degois.publication.issue | 1 | - |
degois.publication.title | RMD Open | - |
degois.publication.volume | 5 | - |
dc.peerreviewed | yes | - |
dc.identifier.doi | https://doi.org/10.1136/rmdopen-2019-000953 | - |
dc.description.version | publishersversion | - |
dc.description.version | published | - |
dc.contributor.institution | NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM) | - |
Aparece nas colecções: | NMS - Artigos em revista internacional com arbitragem científica |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
e000953.full.pdf | 313,1 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.