Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/69191
Registo completo
Campo DCValorIdioma
dc.contributor.advisorCarvalho, José Crespo de-
dc.contributor.authorHoppe, Magnus Tilmar-
dc.date.accessioned2019-05-10T10:36:27Z-
dc.date.available2019-05-10T10:36:27Z-
dc.date.issued2019-01-15-
dc.identifier.urihttp://hdl.handle.net/10362/69191-
dc.description.abstractAlmost every day newspapers and online media publish articles about the ongoing development of machine learning and related applications. Eventually, the practical use cases seem infinite and the potential especially for the efficient organization of supply chains is difficult to determine. This paper examines different applications as well as the underlying operating principles of self-learning algorithms in order to derive implications for supply chain management. Furthermore, an outlook for the prospective development of machine learning and the related further establishment of cognitive automation will be presented.pt_PT
dc.language.isoengpt_PT
dc.rightsopenAccesspt_PT
dc.subjectMachine learningpt_PT
dc.subjectSupply chain managementpt_PT
dc.subjectPredictive maintenancept_PT
dc.subjectCognitive automationpt_PT
dc.titleMachine learning in supply chain managementpt_PT
dc.typemasterThesispt_PT
thesis.degree.nameA Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economicspt_PT
dc.identifier.tid202223760pt_PT
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopt_PT
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Hoppe_2019.pdf1,01 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.