Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/36473
Título: A Fashi lymphoproliferative phenotype reveals non-apoptotic fas signaling in HTLV-1-associated neuroinflammation
Autor: Menezes, Soraya Maria
Leal, Fabio E.
Dierckx, Tim
Khouri, Ricardo
Decanine, Daniele
Silva-Santos, Gilvaneia
Schnitman, Saul V.
Kruschewsky, Ramon
López, Giovanni
Alvarez, Carolina
Talledo, Michael
Gotuzzo, Eduardo
Nixon, Douglas F.
Vercauteren, Jurgen
Brassat, David
Liblau, Roland
Vandamme, Anne Mieke
Galvão-Castro, Bernardo
Van Weyenbergh, Johan
Palavras-chave: Apoptosis
Fas/CD95
HTLV-1-associated myelopathy/tropical spastic paraparesis
Interferon
Lymphoproliferative disease
Multiple sclerosis
NF-κB
Proliferation
Immunology and Allergy
Immunology
SDG 3 - Good Health and Well-being
Data: 14-Fev-2017
Resumo: Human T-cell lymphotropic virus (HTLV)-1 was the first human retrovirus to be associated to cancer, namely adult T-cell leukemia (ATL), but its pathogenesis remains enigmatic, since only a minority of infected individuals develops either ATL or the neuroinflammatory disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). A functional FAS -670 polymorphism in an interferon (IFN)-regulated STAT1-binding site has been associated to both ATL and HAM/TSP susceptibility. Fashi T stem cell memory (Tscm) cells have been identified as the hierarchical apex of ATL, but have not been investigated in HAM/TSP. In addition, both FAS and STAT1 have been identified in an IFN-inducible HAM/TSP gene signature, but its pathobiological significance remains unclear. We comprehensively explored Fas expression (protein/mRNA) and function in lymphocyte activation, apoptosis, proliferation, and transcriptome, in PBMC from a total of 47 HAM/TSP patients, 40 asymptomatic HTLV-1-infected individuals (AC), and 58 HTLV-1-uninfected healthy controls. Fas surface expression followed a two-step increase from HC to AC and from AC to HAM/TSP. In HAM/TSP, Fas levels correlated positively to lymphocyte activation markers, but negatively to age of onset, linking Fashi cells to earlier, more aggressive disease. Surprisingly, increased lymphocyte Fas expression in HAM/TSP was linked to decreased apoptosis and increased lymphoproliferation upon in vitro culture, but not to proviral load. This Fashi phenotype is HAM/TSP-specific, since both ex vivo and in vitro Fas expression was increased as compared to multiple sclerosis (MS), another neuroinflammatory disorder. To elucidate the molecular mechanism underlying non-apoptotic Fas signaling in HAM/TSP, we combined transcriptome analysis with functional assays, i.e., blocking vs. triggering Fas receptor in vitro with antagonist and agonist-, anti-Fas mAb, respectively. Treatment with agonist anti-Fas mAb restored apoptosis, indicating biased, but not defective Fas signaling in HAM/TSP. In silico analysis revealed biased Fas signaling toward proliferation and inflammation, driven by RelA/NF-κB. Correlation of Fas transcript levels with proliferation (but not apoptosis) was confirmed in HAM/TSP ex vivo transcriptomes. In conclusion, we demonstrated a two-step increase in Fas expression, revealing a unique Fashi lymphocyte phenotype in HAM/TSP, distinguishable from MS. Non-apoptotic Fas signaling might fuel HAM/TSP pathogenesis, through increased lymphoproliferation, inflammation, and early age of onset.
Peer review: yes
URI: http://www.scopus.com/inward/record.url?scp=85014419576&partnerID=8YFLogxK
DOI: https://doi.org/10.3389/fimmu.2017.00097
ISSN: 1664-3224
Aparece nas colecções:IHMT: MM - Artigos em revista internacional com arbitragem científica



FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.