Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/189121
Registo completo
Campo DCValorIdioma
dc.contributor.authorSantos, Ricardo Serras-
dc.contributor.authorBrogueira, Tiago-
dc.contributor.authorTomic, Slavisa-
dc.contributor.authorMatos-Carvalho, João P.-
dc.contributor.authorBeko, Marko-
dc.date.accessioned2025-10-07T22:05:55Z-
dc.date.available2025-10-07T22:05:55Z-
dc.date.issued2025-
dc.identifier.issn2644-1330-
dc.identifier.otherPURE: 131489141-
dc.identifier.otherPURE UUID: 20a0920f-da10-4e44-ba3d-08b9a2edd4fc-
dc.identifier.otherScopus: 105016757384-
dc.identifier.urihttp://hdl.handle.net/10362/189121-
dc.descriptionResearch Unit Ref. UID/00408/2025 - LASIGE and under the Grant SFRH/BD/00435/2025, in part by Instituto Lusófono de Investigação e Desenvolvimento COFAC/ILIND/COPELABS/4/2023, in part by the European Union’s Horizon Europe Research and Innovation Programme through Marie Skłodowska-Curie under Grant 101086387, in part by the Science Fund of the Republic of Serbia under Grant 221, and in part by Agile Drone Swarm Control based on Federated Reinforcement Learning and Optimization - ASCENT. Publisher Copyright: © 2020 IEEE.-
dc.description.abstractThis work addresses the problem of autonomous target navigation in indoor environments through wireless sensing. To accomplish accurate navigation, it proposes a novel yet simple localization algorithm based on basic geometry and Weighted Central Mass (WCM) by extracting range measurements from received wireless signals. To avoid obstacle collision in the considered indoor environments, the work proposes a new obstacle detection scheme that is based on wireless sensing, where abrupt signal fluctuations throughout the target's movement are exploited to detect and avoid obstructions. Therefore, integrating the two proposed solutions allows for partially autonomous target navigation in indoor environments without resorting to expensive and complex hardware, such as LiDARs or cameras. The proposed solutions are validated through both simulation and experimental test beds, that corroborate their effectiveness, both in terms of navigation and obstacle detection accuracy.en
dc.language.isoeng-
dc.relationinfo:eu-repo/grantAgreement/FCT/CEEC IND4ed/2021.04180.CEECIND%2FCP1683%2FCT0001/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT-
dc.rightsopenAccess-
dc.subjectAutonomous Navigation-
dc.subjectCollision Avoidance-
dc.subjectIndoor Navigation-
dc.subjectObstacle Detection-
dc.subjectWeighted Central Mass (WCM)-
dc.subjectAutomotive Engineering-
dc.titleTowards Autonomous Target Navigation in Indoor Environments Via Wireless Sensing-
dc.typearticle-
degois.publication.titleIEEE Open Journal of Vehicular Technology-
degois.publication.volume6-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.1109/OJVT.2025.3610180-
dc.description.versionpublishersversion-
dc.description.versioninpress-
dc.contributor.institutionCTS - Centro de Tecnologia e Sistemas-
dc.contributor.institutionUNINOVA-Instituto de Desenvolvimento de Novas Tecnologias-
Aparece nas colecções:Home collection (FCT)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Toward_Autonomous_Target_Navigation_in_Indoor_Environments_via_Wireless_Sensing.pdf5,45 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.