Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/186156
Título: Predicting the implied volatility surface via deep learning
Autor: Lee, Nicolas Yong Joon
Orientador: Rodrigues, Paulo M. M.
Palavras-chave: Implied volatility surface
ConvLSTM
Stochastic volatility inspired
Volatility forecasting
Deep learning
Self-attention mechanism
Neural networks
Volatility surface
IVS calibration
Options pricing
Data de Defesa: 24-Jan-2025
Resumo: This thesis explores deep learning techniques for predicting the implied volatility surface (IVS), a critical component in options pricing and risk management. By applying ConvLSTM and Self-Attention mechanisms, the study evaluates their ability to capture spatial and temporal patterns across strikes and maturities. Results show that grid-based ConvLSTM excels in short-term forecasting, while Self-Attention enhances long-term accuracy by capturing global dependencies. The models were retrained and evaluated under volatile regimes, including the COVID-19 crash, testing their robustness in extreme market conditions. The findings contribute to improved IV surface predictions, benefiting strategies like volatility arbitrage and dynamic hedging.
URI: http://hdl.handle.net/10362/186156
Designação: A Work Project, presented as part of the requirements for the Award of a Master’s degree in Finance from the Nova School of Business and Economics
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Final_WP_Nicolas_Lee.pdf4,56 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.