Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/185994
Registo completo
Campo DCValorIdioma
dc.contributor.advisorLavado, Susana-
dc.contributor.advisorPereira, Gustavo-
dc.contributor.authorKunnemann, Hendrik-
dc.date.accessioned2025-08-04T09:59:48Z-
dc.date.available2025-08-04T09:59:48Z-
dc.date.issued2025-01-29-
dc.date.submitted2025-01-29-
dc.identifier.urihttp://hdl.handle.net/10362/185994-
dc.description.abstractThis study extends a time series forecasting project (PBL) on a small dataset by exam ining ensemble learning, including homogeneous (bagging) and heterogeneous (Dynamic Integration) approaches. While bagging slightly reduces accuracy (MAPE), it improves stability. By incorporating a novel error-based dynamic pairwise correlation strategy to enhance diversity between base-learners, the Dynamic Weighting with Selection method within Dynamic Integration significantly outperforms the baseline, reducing the error met ric MAPE by nearly 10% and the stability metric by over 20%. These findings highlight the effectiveness of ensemble learning, particularly DWS, for accurate and reliable forecasting in small datasets.pt_PT
dc.language.isoengpt_PT
dc.relationUID/ECO/00124/2013pt_PT
dc.rightsopenAccesspt_PT
dc.subjectTime series forecastingpt_PT
dc.subjectEnsemble methodspt_PT
dc.subjectBaggingpt_PT
dc.subjectMoving block boot-strappt_PT
dc.subjectDynamic integrationpt_PT
dc.subjectDiversity among base-learnerspt_PT
dc.subjectSmall datasetpt_PT
dc.titleHarnessing the wisdom of the crowd: ensemble methods for time series forecasting of call center arrivalspt_PT
dc.typemasterThesispt_PT
thesis.degree.nameA Work Project, presented as part of the requirements for the Award of a Master’s degree in Business Analytics from the Nova School of Business and Economicspt_PT
dc.identifier.tid203962931pt_PT
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopt_PT
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Hendrik_Kuennemann_WP_final.pdf3,4 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.