Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/182941
Título: Intelligent recommender system for car insurance plans - focusing on model flexibility and personalisation
Autor: Pótsa, Tamás
Orientador: Ji, Rongjiao
Palavras-chave: Machine learning
Content-based recommendation systems
Insurance
Predictability
Explainability
Flexibility
Data de Defesa: 26-Fev-2023
Resumo: Acknowledging the success of personalized recommendations as support to promote sales within a business, this paper proposes the development of a recommender system to answer Fidelidade’s problem of depersonalization in the auto insurance sector. To build a model able to consider historical data from the customer and the car to recommend the best auto insurance package, a thorough data cleaning and model hypertunning were made to ensure that the three main objectives: predictability (accuracy when predicting), explainability (explaining to each customer the reason to recommend a certain product) and flexibility (proposing different coverages combinations) were satisfied.
URI: http://hdl.handle.net/10362/182941
Designação: A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2022_23_Fall_51263_Tam_s_P_tsa.pdf2,28 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.