Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/182913| Título: | Demand shaping in practice - application of causal inference models for an e-commerce platform |
| Autor: | Solbakken, Claus Åne Sørbøe |
| Orientador: | Han, Qiwei |
| Palavras-chave: | Demand Shaping Causal Inference Double Machine Learning Granger Causality Linear Regression |
| Data de Defesa: | 7-Jun-2023 |
| Resumo: | VOIDS provides deep learning-based demand forecasting. To provide their customers with countermeasures in response to different supply/demand scenarios, VOIDS needs to infer the causal relationship of their clients’ data. This thesis seeks to investigate whether traditional econometric models as well as newer machine learning models can be used to provide VOIDS with a scalable solution for doing causal inference for their clients. The thesis is split into two parts, with part one focused on theoretical discussions and testing, while part 2 presents a practical application of the results for VOIDS’ platform. |
| URI: | http://hdl.handle.net/10362/182913 |
| Designação: | A Work Project, presented as part of the requirements for the Award a Master’s degree in Business Analytics, from the Nova School of Business and Economics |
| Aparece nas colecções: | NSBE: Nova SBE - MA Dissertations |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| WP_FILE.pdf | 4,72 MB | Adobe PDF | Ver/Abrir Acesso Restrito. Solicitar cópia ao autor! |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











