Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/182913
Título: Demand shaping in practice - application of causal inference models for an e-commerce platform
Autor: Solbakken, Claus Åne Sørbøe
Orientador: Han, Qiwei
Palavras-chave: Demand
Shaping
Causal
Inference
Double
Machine
Learning
Granger
Causality
Linear
Regression
Data de Defesa: 7-Jun-2023
Resumo: VOIDS provides deep learning-based demand forecasting. To provide their customers with countermeasures in response to different supply/demand scenarios, VOIDS needs to infer the causal relationship of their clients’ data. This thesis seeks to investigate whether traditional econometric models as well as newer machine learning models can be used to provide VOIDS with a scalable solution for doing causal inference for their clients. The thesis is split into two parts, with part one focused on theoretical discussions and testing, while part 2 presents a practical application of the results for VOIDS’ platform.
URI: http://hdl.handle.net/10362/182913
Designação: A Work Project, presented as part of the requirements for the Award a Master’s degree in Business Analytics, from the Nova School of Business and Economics
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
WP_FILE.pdf4,72 MBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.