Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/180980| Título: | Bankruptcy prediction using machine learning models: empirical results in the Colombian manufacturing industry (2018-2022) |
| Autor: | Castro, Miguel Angel Parra |
| Orientador: | Rodríguez, Yeny Gianinazzi, Virginia |
| Palavras-chave: | Corporate insolvency Business failure Insolvency prediction Bankruptcy Financial analysis Financial ratios Random forest |
| Data de Defesa: | 1-Fev-2024 |
| Resumo: | The purpose of this study is to examine financial indicators that reveal the situation of corporate failure in manufacturing companies in Colombia. The use of these indicators is based on previous studies that have used predictive models of corporate fragility: multiple discriminant analysis, logistic regression, and machine learning. This work uses logistic regression and random forests models. This work is based on financial indicators made of the data reported between 2018 and 2022 in the database Sistema de Información y Riesgos Empresariales (SIREM) of the Superintendence of Companies. |
| URI: | http://hdl.handle.net/10362/180980 |
| Designação: | A Work Project, presented as part of the requirements for the Award of a Master’s degree in Finance from the Nova School of Business and Economics |
| Aparece nas colecções: | NSBE: Nova SBE - MA Dissertations |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| FALL24_47524_Miguel_Parra_Castro.pdf | 789,99 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











