Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/180980
Título: Bankruptcy prediction using machine learning models: empirical results in the Colombian manufacturing industry (2018-2022)
Autor: Castro, Miguel Angel Parra
Orientador: Rodríguez, Yeny
Gianinazzi, Virginia
Palavras-chave: Corporate insolvency
Business failure
Insolvency prediction
Bankruptcy
Financial analysis
Financial ratios
Random forest
Data de Defesa: 1-Fev-2024
Resumo: The purpose of this study is to examine financial indicators that reveal the situation of corporate failure in manufacturing companies in Colombia. The use of these indicators is based on previous studies that have used predictive models of corporate fragility: multiple discriminant analysis, logistic regression, and machine learning. This work uses logistic regression and random forests models. This work is based on financial indicators made of the data reported between 2018 and 2022 in the database Sistema de Información y Riesgos Empresariales (SIREM) of the Superintendence of Companies.
URI: http://hdl.handle.net/10362/180980
Designação: A Work Project, presented as part of the requirements for the Award of a Master’s degree in Finance from the Nova School of Business and Economics
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
FALL24_47524_Miguel_Parra_Castro.pdf789,99 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.