Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/179846
Registo completo
Campo DCValorIdioma
dc.contributor.advisorHirschey, Nicholas H.-
dc.contributor.authorLidén, Joel Benjamin-
dc.date.accessioned2025-02-26T10:54:11Z-
dc.date.available2025-02-26T10:54:11Z-
dc.date.issued2024-01-26-
dc.date.submitted2023-12-20-
dc.identifier.urihttp://hdl.handle.net/10362/179846-
dc.description.abstractThis strategy explores the use of ESG metrics within machine learning frameworks, particularly Gradient Boosting Trees and SHAP-value analysis, to predict stock performance in the Nordic Markets. Focusing on data from 2007-2022, it examines the efficiency of ESG metrics in forecasting Active Return. Utilizing the model, it reveals that long portfolios, especially those informed by SHAP analysis, consistently outperform the OMX Nordic Large cap Index, while short portfolios show underperformance. The study highlights the potential of machine learning in enhancing ESG-focused investment strategies, suggesting the need for broader datasets and diverse market analysis for more robust and comprehensive investment insights.pt_PT
dc.language.isoengpt_PT
dc.relationUID/ECO/00124/2013pt_PT
dc.rightsopenAccesspt_PT
dc.subjectMachine learningpt_PT
dc.subjectEsgpt_PT
dc.subjectEquitiespt_PT
dc.subjectNordic marketpt_PT
dc.subjectGradient boosting treept_PT
dc.subjectSustainable financept_PT
dc.titleMachine learning in Esg investing: predictive analysis for stock performancept_PT
dc.typemasterThesispt_PT
thesis.degree.nameA Work Project, presented as part of the requirements for the Award of a Master’s degree in Finance from the Nova School of Business and Economicspt_PT
dc.identifier.tid203866142pt_PT
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopt_PT
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
WP_FILE_Joel_Lid_n_54345.pdf1,75 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.