Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/179132
Título: Enhancing the clinical decision making of sepsis detection: a machine learning approach to early diagnosis
Autor: Essedaoui, Hajar
Orientador: Castro, João
Palavras-chave: Machine learning
Healthcare
Artificial intelligence
Sepsis
Early diagnosis
Data de Defesa: 20-Jun-2024
Resumo: Sepsis is a perilous, life-threatening illness and is a leading cause of death in the world; with an annual death toll of 6 million people worldwide (Reyna et al., 2019). The syndromic nature of the condition is convoluted and almost indistinguishable from uncomplicated infections. Sepsis requires immediate admission to an intensive care unit, and every hour of delay was associated with an absolute mortality rate of 0.3% for sepsis and 1.8% for sepsis shock. To further current endeavours in early sepsis detection, this study offers a machine learning model that predicts sepsis 12 hours before the onset time of sepsis-3 clinical criteria; the current norm for diagnosing sepsis.
URI: http://hdl.handle.net/10362/179132
Designação: A Work Project, presented as part of the requirements for the Award of a master’s degree in Management from the Nova School of Business and Economics
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2020-21_spring_40576_hajar-essedaoui.pdf699,04 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.