Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/173788Registo completo
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.contributor.advisor | Han, Qiwei | - |
| dc.contributor.author | Gross, Lotte | - |
| dc.date.accessioned | 2024-10-21T13:28:28Z | - |
| dc.date.available | 2024-10-21T13:28:28Z | - |
| dc.date.issued | 2024-01-19 | - |
| dc.date.submitted | 2024-01-19 | - |
| dc.identifier.uri | http://hdl.handle.net/10362/173788 | - |
| dc.description.abstract | This study explores the transformative impact of BERT and its variants, particularly RoBERTa, on hierarchical multi-class product classification. Leveraging the bidirectional nature of BERT, the research evaluates flat and hierarchical model architectures, revealing RoBERTa's superiority due to its nuanced understanding of diverse language styles in product titles. The hierarchical model, incorporating dynamic masked softmax, achieves a remarkable 96% accuracy in layer 2, showcasing efficient category handling. Despite longer training times, the innovative approach mitigates error propagation. The study emphasizes the trade-off between computational cost and interpretability, providing insights for future NLP research. | pt_PT |
| dc.language.iso | eng | pt_PT |
| dc.relation | UID/ECO/00124/2013 | pt_PT |
| dc.rights | openAccess | pt_PT |
| dc.subject | Bert | pt_PT |
| dc.subject | Nlp | pt_PT |
| dc.subject | Product classification | pt_PT |
| dc.subject | Machine learning | pt_PT |
| dc.title | Leveraging dynamic masked softmax and shared hidden layers for hierarchical text-based product classification with bert | pt_PT |
| dc.type | masterThesis | pt_PT |
| thesis.degree.name | A Work Project, presented as part of the requirements for the Award of a Master’s degree in Business Analytics from the Nova School of Business and Economics | pt_PT |
| dc.identifier.tid | 203605748 | pt_PT |
| dc.subject.fos | Domínio/Área Científica::Ciências Sociais::Economia e Gestão | pt_PT |
| Aparece nas colecções: | NSBE: Nova SBE - MA Dissertations | |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| 51403_Master_Thesis (1).pdf | 1,91 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











