Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/172413
Título: | Abdominal MRI Unconditional Synthesis with Medical Assessment |
Autor: | Gonçalves, Bernardo Silva, Mariana Vieira, Luísa Vieira, Pedro |
Palavras-chave: | generative adversarial networks medical imaging synthesis MRI synthesis StyleGAN3 unconditional synthesis Computer Science (miscellaneous) Medicine (miscellaneous) Health Informatics Health Professions (miscellaneous) |
Data: | 7-Jun-2024 |
Resumo: | Current computer vision models require a significant amount of annotated data to improve their performance in a particular task. However, obtaining the required annotated data is challenging, especially in medicine. Hence, data augmentation techniques play a crucial role. In recent years, generative models have been used to create artificial medical images, which have shown promising results. This study aimed to use a state-of-the-art generative model, StyleGAN3, to generate realistic synthetic abdominal magnetic resonance images. These images will be evaluated using quantitative metrics and qualitative assessments by medical professionals. For this purpose, an abdominal MRI dataset acquired at Garcia da Horta Hospital in Almada, Portugal, was used. A subset containing only axial gadolinium-enhanced slices was used to train the model. The obtained Fréchet inception distance value (12.89) aligned with the state of the art, and a medical expert confirmed the significant realism and quality of the images. However, specific issues were identified in the generated images, such as texture variations, visual artefacts and anatomical inconsistencies. Despite these, this work demonstrated that StyleGAN3 is a viable solution to synthesise realistic medical imaging data, particularly in abdominal imaging. |
Descrição: | Funding Information: This work was funded by the FCT\u2014Portuguese Foundation for Science and Technology and Bee2Fire SA under a PhD grant with reference PD/BDE/150624/2020. Publisher Copyright: © 2024 by the authors. |
Peer review: | yes |
URI: | http://hdl.handle.net/10362/172413 |
DOI: | https://doi.org/10.3390/biomedinformatics4020082 |
ISSN: | 2673-7426 |
Aparece nas colecções: | Home collection (FCT) |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Abdominal_MRI_Unconditional_Synthesis_with_Medical.pdf | 2,99 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.