Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/171465
Título: Enhancing venture capital investment strategies through automated web data collection and analysis
Autor: Kohl, Jens Gabriel
Orientador: Brinca, Pedro
Queiro, Francisco
Palavras-chave: Venture capital
Startups
Web scraping
Web crawling
Artificial intelligence
Machine learning
Data de Defesa: 6-Jun-2023
Resumo: “Identifying investment opportunities is crucial for every venture capital fund, yet this process is often labor-intensive, time-consuming, and profoundly relies on the gut feeling of investment professionals. With new companies being discovered every day and intensified competition among funds, it has become increasingly challenging to recognize the most attractive prospects quickly. Machine learning-based decision support brings objectivity to this process, reducing the need for intuition. By applying supervised machine learning techniques to rate deals identified through web crawling and proprietary fund data, I found that random forest models perform exceptionally well, significantly cutting down the time spent on deal sourcing.
URI: http://hdl.handle.net/10362/171465
Designação: A Work Project, presented as part of the requirements for the Award of a master’s degree in business Analytics from the Nova School of Business and Economics.
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2022_23_Spring_48414_Jens_Gabriel_Kohl.pdf1,02 MBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.