Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/166929
Registo completo
Campo DCValorIdioma
dc.contributor.advisorBelo, Rodrigo-
dc.contributor.advisorHarris, Rachel Marie-
dc.contributor.advisorFabian, Fabian-
dc.contributor.authorSell, Carina Hilde-
dc.date.accessioned2024-05-03T14:00:56Z-
dc.date.available2024-05-03T14:00:56Z-
dc.date.issued2023-01-19-
dc.date.submitted2023-01-19-
dc.identifier.urihttp://hdl.handle.net/10362/166929-
dc.description.abstractThis thesis examines the performance of machine learning to predict lead conversion probability in an early lead maturity stage based on customer contact-form data. An empirical case study was conducted developing models at two maturity stages in the lead funnel using automated machine learning and their expected value for the business was calculated. The resulting models prove the suitability of machine learning to predict lead conversion and reveal that predictions are better in a later maturity stage. Furthermore, the findings suggest including cost and benefit calculations in the development is beneficial, as not all models are profitable despite good performancept_PT
dc.language.isoengpt_PT
dc.relationUID/ECO/00124/2013pt_PT
dc.rightsopenAccesspt_PT
dc.subjectPredictive lead scoringpt_PT
dc.subjectLead managementpt_PT
dc.subjectExpected value frameworkpt_PT
dc.subjectMachine learningpt_PT
dc.subjectCrmpt_PT
dc.titleThe expected value of applying machine learning for predictive lead scoring based on customer contact-form input - a case in the B2b energy sectorpt_PT
dc.typemasterThesispt_PT
thesis.degree.nameA Work Project, presented as part of the requirements for the Award of a Master’s degree in Management from the Nova School of Business and Economics.pt_PT
dc.identifier.tid203364228pt_PT
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopt_PT
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2022_23_Fall_48483_Carina_Sell.pdf2,02 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.