Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/162369
Título: Reinterpreting Artists’ Self-Portraits through AI Derivative Creations
Autor: Barranha, Helena
Data: 2023
Editora: BTU Brandenburgische Technische Universität Cottbus-Senftenberg
Resumo: Over recent years, the use of artificial intelligence (AI) in the field of Art History has garnered growing interest. Many academic publications on this relatively recent topic explore the role of AI in the analysis of huge datasets and digitised art collections, according to specific research or curatorial questions, while others address AI as a theme or a tool for contemporary artistic practices. This paper presents an alternative approach, considering generative AI as part of an interpretative methodology based on derivative images created with text prompts that specifically request a reinterpretation of a particular artwork, without adding any stylistic or contextual modifiers. Focusing on the iconic Self-Portrait (in a redcoat) by the Portuguese painter Aurélia de Souza, the aim of this study is to discuss how images produced with different text-to-image AI generators may not only illustrate some of the features highlighted in Art History studies, but also foster new questions and readings of the same artwork.
Descrição: UIDB/00417/2020 UIDP/00417/2020
Peer review: yes
URI: http://hdl.handle.net/10362/162369
ISBN: 978-3-88609-891-0
Aparece nas colecções:FCSH: IHA - Capítulos de livros internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
EVA_Berlin_2023_Helena_Barranha_paper_cover_and_contents.pdf1,18 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.