Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/161418
Título: Extensions to IVX methods of inference for return predictability
Autor: Demetrescu, Matei
Georgiev, Iliyan
Rodrigues, Paulo M.M.
Taylor, A. M.Robert
Palavras-chave: (Un)conditional heteroskedasticity
Endogeneity
IVX estimation
Predictive regression
Residual wild bootstrap
Subsample tests
Unknown regressor persistence
Economics and Econometrics
Data: Dez-2023
Resumo: The contribution of this paper is threefold. First, we demonstrate that, provided either a suitable bootstrap implementation is employed or heteroskedasticity-consistent standard errors are used, the IVX-based predictability tests of Kostakis et al. (2015) retain asymptotically valid inference under the null hypothesis under considerably weaker assumptions on the innovations than are required by Kostakis et al. (2015). Second, under the same assumptions, we develop asymptotically valid bootstrap implementations of the IVX tests. Monte Carlo simulations show that the bootstrap tests deliver considerably more accurate finite sample inference than the asymptotic implementations of the tests under certain problematic parameter constellations, most notably for one-sided testing, and where multiple predictors are included. Third, we show how sub-sample implementations of the IVX approach can be used to develop asymptotically valid one-sided and two-sided tests for the presence of temporary windows of predictability.
Descrição: Funding Information: The authors thank three anonymous referees, the Co-Editor (Torben Andersen), and Tassos Magdalinos for their helpful and constructive feedback on earlier versions of this paper. Rodrigues gratefully acknowledges financial support from the Portuguese Science Foundation (FCT) through project PTDC/EGE-ECO/28924/2017 , and ( UID/ECO/00124/2013 and Social Sciences DataLab, Project 22209), POR Lisboa, Portugal ( LISBOA-01-0145-FEDER-007722 and Social Sciences DataLab, Project 22209) and POR Norte, Portugal (Social Sciences DataLab, Project 22209). Taylor gratefully acknowledges financial support provided by the Economic and Social Research Council of the United Kingdom under research grant ES/R00496X/1 . Publisher Copyright: © 2022 The Authors
Peer review: yes
URI: http://hdl.handle.net/10362/161418
DOI: https://doi.org/10.1016/j.jeconom.2022.02.007
ISSN: 0304-4076
Aparece nas colecções:NSBE: Nova SBE - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
1_s2.0_S0304407622000586_main.pdf708,82 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.