Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/161278| Título: | Ionizing radiation applied to the pre-treatment of macroalgae biomass for biogas production |
| Autor: | Batista, Joana Bastos |
| Orientador: | Ventura, Márcia Ferreira, Luís |
| Palavras-chave: | Anaerobic digestion Anaerobic co-digestion Brown algae biomass Food waste biomass Biogas Ionizing radiation |
| Data de Defesa: | Dez-2023 |
| Resumo: | Anaerobic digestion (AD) has shown to be one of the best approaches to food waste (FW) valor-
ization, due to the added value of the final products (biogas and digestate) and less requirement for
operational space and input energy.
Macroalgae are widely available biomass due to their natural common occurrence in marine and
freshwater ecosystems (such as algal blooms) and surplus from the cosmetic and pharmaceutical in-
dustries. It can be an excellent co-substrate to co-digest with FW since it is expected that by performing
this Anaerobic Co-Digestion (AcoD), an increase of the C/N ratio, avoidance of ammonia accumulation,
increase in microbial diversity, and availability of macro- and micro-nutrients essential for microbial ac-
tivity can occur. Even though macroalgae are rich in carbohydrates (especially in the cell wall), some of
these are extremely complex polysaccharides that are not easily bio-hydrolyzed, making the enzymatic
activity extremely slow and AcoD most likely inefficient.
The use of pre-treatments to break down the polysaccharides appears to be the best approach
to overthrow this problem. Ionizing radiation has many advantages to treating biomass when compared
to the more traditional methods since it is simple to operate, doesn’t require the use of any chemical
reagents, can deal with large amounts of product, has a high penetrating capacity with a high capacity
for breaking long organic molecular chains, and can be carried out under atmospheric temperature and
pressure conditions. This makes it an extremely energy-efficient pre-treatment. If the proper radiation
dose is applied, it is expected a decrease in inter- and intra-molecular order of the macroalgae’s poly-
saccharides in the cell, facilitating AcoD.
Two hydraulic retention times (HRTs) were tested for the mono-AD of food waste (FW), and AcoD
of FW and irradiated or non-irradiated brown algae (Saccharina latissima): When using an HRT of 16
days, mono-digesting FW had the highest biomethane (CH4) production rate and yield, followed by co-
digesting FW and non-irradiated algae. The gamma radiation doses of 22 kGy at a dose rate (DR) of
0.6 kGy.h-1 (on dried and wet algae) and 28 kGy at a DR of 9 kGy.h-1 (on dried algae) appeared not to
be effective in the reduction of the algae's polysaccharides’ complexity: Lower biogas and methane
yields were observed in these assays. An increase in polysaccharides’ complexity (e.g., cross-linking)
induced by gamma radiation occurred.
Using an HRT of 25 days increased both biogas and CH4 yields for AcoD with irradiated and non-irradi-
ated algae occurred, possibly by allowing a more stable digestion of the substrates. The use of a lower
OLR and better microbial growth of methanogenic archaea might have impacted the observed rise in
methane content since the time for them to double inside the bioreactor and to consume the provided
feedstock increases. An increase in CO2 and a decrease in CH4 content happened on the co-digestion
assays using irradiated and non-irradiated algae in both HRTs of 16 and 25 days. The addition of algae
biomass might be increasing the quantity of easily digestible polysaccharides, enhancing the acidogenic
and acetogenic stages of AD, leading to greater CO2 production and VFA content.
Nonetheless, the addition of non-irradiated algae appears to have the most positive impact in
AcoD at an HRT of 25 days, where the higher biogas and CH4 yields are obtained. Ionizing radiation as
a pre-treatment of brown algae biomass in the tested conditions did not benefit the AcoD process. A digestão anaeróbia (DA) apresenta-se como uma das melhores alternativas para a valoriza- ção de resíduos alimentares (RA) graças ao valor acrescentado dos seus produtos finais (biogás e digerido), à menor necessidade de espaço operacional e à reduzida energia despendida no processo. As macroalgas são uma biomassa amplamente disponível devido à sua ocorrência natural em ecossis- temas marinhos e de água doce (como a floração algal) e aos excedentes das indústrias cosmética e farmacêutica. Estas podem ser um excelente co-substrato para DA com RA, podendo aumentar o rácio de C/N, consequentemente evitando-se a acumulação de amónia, aumentando-se a diversidade mi- crobiana e fornecendo-se macro- e micronutrientes essenciais para a atividade microbiana. Apesar de as macroalgas serem ricas em hidratos de carbono (especialmente na parede celular), estas contêm polissacarídeos extremamente complexos que não são facilmente bio-hidrolisados, tornando a ativi- dade enzimática extremamente lenta e a sua digestão ineficiente. O uso de pré-tratamentos para descomplexificar os polissacarídeos aparenta ser uma aborda- gem vantajosa para superar este problema. A radiação ionizante (RI) possui diversas vantagens no tratamento de biomassa em comparação com outros pré-tratamentos mais comuns: é de simples ope- ração, não requer o uso de reagentes químicos e pode ser realizada a temperatura e pressão atmos- féricas. Isto torna-a um pré-tratamento extremamente eficiente em termos energéticos. Se a dose ade- quada de radiação for aplicada, espera-se uma diminuição da complexidade da estrutura inter- e intra- molecular dos polissacarídeos das macroalgas, facilitando a co-DA. Dois tempos de retenção hidráulica (TRHs) foram testados para a DA de RA e Co-DA de RA com alga castanha não irradiada e irradiada (Saccharina latissima): num TRH de 16 dias, a mono- digestão de RA obteve a maior produção de biogás e metano (CH4), seguida da co-DA de RA e alga não irradiada. O uso de radiação gama com uma dose de 22 kGy a uma taxa de dose (TD) de 0.6 kGy.h-1 e 28 kGy a uma TD de 9 kGy.h-1 não foram eficazes na redução da complexidade dos polissa- carídeos das algas, tendo sido obtidos menores rendimentos de biogás e metano nestes ensaios. Um aumento na complexidade dos polissacarídeos induzido pela radiação gama aparentou ocorrer (cau- sado, por exemplo, por reticulação). Utilizando um TRH de 25 dias, observou-se um aumento dos ren- dimentos de biogás e CH4 tanto para co-digestão com algas irradiadas como para com algas não irra- diadas. Este TRH possivelmente permitiu uma digestão mais estável dos substratos. O uso de uma menor carga orgânica volumétrica e um melhor crescimento microbiano das arqueias metanogénicas pode ter ocorrido e causado o aumento no teor de metano, uma vez que o seu tempo de duplicação dentro reator e para consumir a alimentação fornecida aumentou com um TRH maior. Um aumento no teor de CO2 e uma diminuição no de CH4 ocorreu nos ensaios de Co-AD com algas irradiadas e não irradiadas para ambos os TRHs. A adição da alga aparenta ter aumentado a quantidade de polissacarídeos facilmente digeríveis, estimulando a acidogénese e acetogénse e, con- sequentemente, aumentando a produção de CO2 e o teor em ácidos gordos voláteis. Apesar disto, a adição de alga não irradiada aparenta ter um impacto positivo na co-DA, especi- almente num TRH de 25 dias, obtendo-se os maiores rendimentos de biogás e CH4. O uso de RI como pré-tratamento nesta alga castanha nas condições testadas não beneficiou o processo de DA |
| URI: | http://hdl.handle.net/10362/161278 |
| Designação: | MASTER IN BIOTECHNOLOGY |
| Aparece nas colecções: | FCT: DQ - Dissertações de Mestrado |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Batista_2023.pdf | 6,16 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











