Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/161183
Título: Analysis of quantitative investment strategies
Autor: Eusébio, Hugo
Orientador: Hirschey, Nicholas
Palavras-chave: Systematic trading strategy
Momentum
Value
Volatility forecasting
Machine learning
Neural networks
Quantitative trading strategy
Data de Defesa: 16-Dez-2022
Resumo: This paper tests the combination of five different sub-strategies, resembling the performance of a multi-strategy hedge fund benchmarked against the popular buy-and-hold S&P 500 investing approach. The sub-strategies are: residual momentum, value including intangibles, value and momentum, volatility forecasting, and a long short-term memory strategy, the latter two being machine-learning-based, and all investing in the U.S. universe. The combined strategy’s performance is analyzed by three weighting schemes: equal-weight, momentum, and mean-variance, resulting in a gamut of robustness and performance. The combined strategies reap diversification benefits, thereby giving investors a superior risk-reward trade-off compared to the buy-and-hold S&P 500 approach.
URI: http://hdl.handle.net/10362/161183
Designação: A Work Project, presented as part of the requirements for the Award of a Master’s degree in Finance from the Nova School of Business and Economics.
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2022_2023_fall_hugoeusebio.pdf869,13 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.