Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/161183| Título: | Analysis of quantitative investment strategies |
| Autor: | Eusébio, Hugo |
| Orientador: | Hirschey, Nicholas |
| Palavras-chave: | Systematic trading strategy Momentum Value Volatility forecasting Machine learning Neural networks Quantitative trading strategy |
| Data de Defesa: | 16-Dez-2022 |
| Resumo: | This paper tests the combination of five different sub-strategies, resembling the performance of a multi-strategy hedge fund benchmarked against the popular buy-and-hold S&P 500 investing approach. The sub-strategies are: residual momentum, value including intangibles, value and momentum, volatility forecasting, and a long short-term memory strategy, the latter two being machine-learning-based, and all investing in the U.S. universe. The combined strategy’s performance is analyzed by three weighting schemes: equal-weight, momentum, and mean-variance, resulting in a gamut of robustness and performance. The combined strategies reap diversification benefits, thereby giving investors a superior risk-reward trade-off compared to the buy-and-hold S&P 500 approach. |
| URI: | http://hdl.handle.net/10362/161183 |
| Designação: | A Work Project, presented as part of the requirements for the Award of a Master’s degree in Finance from the Nova School of Business and Economics. |
| Aparece nas colecções: | NSBE: Nova SBE - MA Dissertations |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| 2022_2023_fall_hugoeusebio.pdf | 869,13 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











