Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/157961
Título: Hybrid deep modeling of a CHO-K1 fed-batch process
Autor: Pinto, José
Ramos, João R. C.
Costa, Rafael S.
Rossell, Sergio
Dumas, Patrick
Oliveira, Rui
Palavras-chave: hybrid modeling
deep neural networks
first-principles
ADAM
stochastic regularization
CHO-K1 cells
biopharma 4.0
Biotechnology
Bioengineering
Histology
Biomedical Engineering
Data: 2023
Resumo: Hybrid modeling combining First-Principles with machine learning is becoming a pivotal methodology for Biopharma 4.0 enactment. Chinese Hamster Ovary (CHO) cells, being the workhorse for industrial glycoproteins production, have been the object of several hybrid modeling studies. Most previous studies pursued a shallow hybrid modeling approach based on threelayered Feedforward Neural Networks (FFNNs) combined with macroscopic material balance equations. Only recently, the hybrid modeling field is incorporating deep learning into its framework with significant gains in descriptive and predictive power.
Descrição: JP acknowledges PhD grant SFRD/BD14610472019, Fundação para a Ciência e Tecnologia (FCT).
Peer review: yes
URI: http://hdl.handle.net/10362/157961
DOI: https://doi.org/10.3389/fbioe.2023.1237963
ISSN: 2296-4185
Aparece nas colecções:Home collection (FCT)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
fbioe_11_1237963.pdf2,65 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.