Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/156222
Registo completo
Campo DCValorIdioma
dc.contributor.advisorRodrigues, Paulo M.M.-
dc.contributor.authorSistovaris, Nicholas-
dc.date.accessioned2023-08-03T09:28:40Z-
dc.date.available2023-08-03T09:28:40Z-
dc.date.issued2023-01-13-
dc.date.submitted2022-12-16-
dc.identifier.urihttp://hdl.handle.net/10362/156222-
dc.description.abstractThis work project contributes to the current literature on using Google search queries to predict economic activity. We demonstrate, using the two-step Error-Correction Model (ECM) by Engle and Granger (1987), that specific search queries, also known as Google Trends, are related to house prices in Portugal. For out-of-sample forecasts, our ECM model with the Google Trends variables performed significantly better predicting one year ahead, in which, the Mean Absolute Error was reduced by over 30% compared to our baseline model. Until now, conventional economics has not leveraged this highly accessible digital data in their models, we hope this will change.pt_PT
dc.language.isoengpt_PT
dc.relationUID/ECO/00124/2013pt_PT
dc.rightsopenAccesspt_PT
dc.subjectEconometricspt_PT
dc.subjectHousingpt_PT
dc.subjectGoogle trendspt_PT
dc.subjectForecastingpt_PT
dc.subjectError-correction modelpt_PT
dc.titleLeveraging google search queries to help predict house prices in Portugalpt_PT
dc.typemasterThesispt_PT
thesis.degree.nameA Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economicspt_PT
dc.identifier.tid203312643pt_PT
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopt_PT
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations



FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.