Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/156097
Título: Evaluation of an unsupervised learning approach for portfolio optimization
Autor: Sandrucci, Dario
Orientador: d’Arienzo, Daniele
Palavras-chave: Unsupervised learning
K-means
Omega ratio
Minkowski distance
Portfolio optimization
Data de Defesa: 13-Jan-2023
Resumo: Throughout this directed research, we aim to identify opportunities for machine learning to support portfolio optimization. Based on a thorough literature review we decide to pursue an unsupervised learning approach and test its performance by conducting benchmarking against classic portfolio optimization techniques. To ensure the validity of our findings we explore the model’s robustness by conducting an array of experiments. In summary, we deem our version of the clustering algorithm to provide a suitable investment framework for return-focused investors with lower risk aversion. We suggest further research towards mitigating the algorithm’s inconsistencies and exploring additional tuning methodologies.
URI: http://hdl.handle.net/10362/156097
Designação: A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2022_23_Fall_48436_Dario_Sandrucci.pdf1,26 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.