Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/155191| Título: | Transcriptomic Analysis of Acetaminophen Biodegradation by Penicillium chrysogenum var. halophenolicum and Insights into Energy and Stress Response Pathways |
| Autor: | Enguita, Francisco J. Pereira, Sofia Leitão, Ana Lúcia |
| Palavras-chave: | acetaminophen biodegradation functional networks Penicillium chrysogenum transcriptomic analysis Ecology, Evolution, Behavior and Systematics Plant Science Microbiology (medical) SDG 6 - Clean Water and Sanitation SDG 14 - Life Below Water |
| Data: | 27-Mar-2023 |
| Resumo: | (1) Background: Acetaminophen (APAP), an active component of many analgesic and antipyretic drugs, is one of the most concerning trace contaminants in the environment and is considered as an emergent pollutant of marine and aquatic ecosystems. Despite its biodegradability, APAP has become a recalcitrant compound due to the growth of the global population, the ease of availability, and the inefficient wastewater treatment applied. (2) Methods: In this study, we used a transcriptomic approach to obtain functional and metabolic insights about the metabolization of APAP by a phenol-degrading fungal strain, Penicillium chrysogenum var. halophenolicum. (3) Results: We determined that the transcriptomic profile exhibited by the fungal strain during APAP degradation was very dynamic, being characterized by an abundance of dysregulated transcripts which were proportional to the drug metabolization. Using a systems biology approach, we also inferred the protein functional interaction networks that could be related to APAP degradation. We proposed the involvement of intracellular and extracellular enzymes, such as amidases, cytochrome P450, laccases, and extradiol-dioxygenases, among others. (4) Conclusions: Our data suggested that the fungus could metabolize APAP via a complex metabolic pathway, generating nontoxic metabolites, which demonstrated its potential in the bioremediation of this drug. |
| Descrição: | Publisher Copyright: © 2023 by the authors. This research received no external funding |
| Peer review: | yes |
| URI: | http://hdl.handle.net/10362/155191 |
| DOI: | https://doi.org/10.3390/jof9040408 |
| ISSN: | 2309-608X |
| Aparece nas colecções: | Home collection (FCT) |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Transcriptomic_Analysis_of_Acetaminophen_Biodegradation.pdf | 3,98 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











