Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/154614| Título: | Microwave Synthesis of Visible-Light-Activated g-C3N4/TiO2 Photocatalysts |
| Autor: | Matias, Maria Leonor Reis-Machado, Ana S. Rodrigues, Joana Calmeiro, Tomás Deuermeier, Jonas Pimentel, Ana Fortunato, Elvira Martins, Rodrigo Nunes, Daniela |
| Palavras-chave: | g-CN/TiO heterostructures microwave synthesis photocatalysis pollutant degradation Chemical Engineering(all) Materials Science(all) |
| Data: | 17-Mar-2023 |
| Resumo: | The preparation of visible-light-driven photocatalysts has become highly appealing for environmental remediation through simple, fast and green chemical methods. The current study reports the synthesis and characterization of graphitic carbon nitride/titanium dioxide (g-C3N4/TiO2) heterostructures through a fast (1 h) and simple microwave-assisted approach. Different g-C3N4 amounts mixed with TiO2 (15, 30 and 45 wt. %) were investigated for the photocatalytic degradation of a recalcitrant azo dye (methyl orange (MO)) under solar simulating light. X-ray diffraction (XRD) revealed the anatase TiO2 phase for the pure material and all heterostructures produced. Scanning electron microscopy (SEM) showed that by increasing the amount of g-C3N4 in the synthesis, large TiO2 aggregates composed of irregularly shaped particles were disintegrated and resulted in smaller ones, composing a film that covered the g-C3N4 nanosheets. Scanning transmission electron microscopy (STEM) analyses confirmed the existence of an effective interface between a g-C3N4 nanosheet and a TiO2 nanocrystal. X-ray photoelectron spectroscopy (XPS) evidenced no chemical alterations to both g-C3N4 and TiO2 at the heterostructure. The visible-light absorption shift was indicated by the red shift in the absorption onset through the ultraviolet-visible (UV-VIS) absorption spectra. The 30 wt. % of g-C3N4/TiO2 heterostructure showed the best photocatalytic performance, with a MO dye degradation of 85% in 4 h, corresponding to an enhanced efficiency of almost 2 and 10 times greater than that of pure TiO2 and g-C3N4 nanosheets, respectively. Superoxide radical species were found to be the most active radical species in the MO photodegradation process. The creation of a type-II heterostructure is highly suggested due to the negligible participation of hydroxyl radical species in the photodegradation process. The superior photocatalytic activity was attributed to the synergy of g-C3N4 and TiO2 materials. |
| Descrição: | Funding Information: Acknowledgments are also given to the EC project SYNERGY H2020-WIDESPREAD-2020-5, CSA, proposal nº 952169, EMERGE-2020-INFRAIA-2020-1, proposal nº 101008701. Publisher Copyright: © 2023 by the authors. |
| Peer review: | yes |
| URI: | http://hdl.handle.net/10362/154614 |
| DOI: | https://doi.org/10.3390/nano13061090 |
| ISSN: | 2079-4991 |
| Aparece nas colecções: | Home collection (FCT) |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Microwave_Synthesis.pdf | 7,45 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











